scholarly journals Nonlocal and Size-Dependent Dielectric Function for Plasmonic Nanoparticles

2019 ◽  
Vol 9 (15) ◽  
pp. 3083
Author(s):  
Kai-Jian Huang ◽  
Shui-Jie Qin ◽  
Zheng-Ping Zhang ◽  
Zhao Ding ◽  
Zhong-Chen Bai

We develop a theoretical approach to investigate the impact that nonlocal and finite-size effects have on the dielectric response of plasmonic nanostructures. Through simulations, comprehensive comparisons of the electron energy loss spectroscopy (EELS) and the optical performance are discussed for a gold spherical dimer system in terms of different dielectric models. Our study offers a paradigm of high efficiency compatible dielectric theoretical framework for accounting the metallic nanoparticles behavior combining local, nonlocal and size-dependent effects in broader energy and size ranges. The results of accurate analysis and simulation for these effects unveil the weight and the evolution of both surface and bulk plasmons vibrational mechanisms, which are important for further understanding the electrodynamics properties of structures at the nanoscale. Particularly, our method can be extended to other plasmonic nanostructures where quantum-size or strongly interacting effects are likely to play an important role.

2017 ◽  
Vol 8 ◽  
pp. 85505 ◽  
Author(s):  
Pia Seeberger ◽  
Julien Vidal

Formation entropy of point defects is one of the last crucial elements required to fully describe the temperature dependence of point defect formation. However, while many attempts have been made to compute them for very complicated systems, very few works have been carried out such as to assess the different effects of finite size effects and precision on such quantity. Large discrepancies can be found in the literature for a system as primitive as the silicon vacancy. In this work, we have proposed a systematic study of formation entropy for silicon vacancy in its 3 stable charge states: neutral, +2 and –2 for supercells with size not below 432 atoms. Rationalization of the formation entropy is presented, highlighting importance of finite size error and the difficulty to compute such quantities due to high numerical requirement. It is proposed that the direct calculation of formation entropy of VSi using first principles methods will be plagued by very high computational workload (or large numerical errors) and finite size dependent results.


Author(s):  
Alexandre Coates ◽  
Brendon W Lovett ◽  
Erik Gauger

Abstract Environmental noise plays a key role in determining the efficiency of transport in quantum systems. However, disorder and localisation alter the impact of such noise on energy transport. To provide a deeper understanding of this relationship we perform a systematic study of the connection between eigenstate localisation and the optimal dephasing rate in 1D chains. The effects of energy gradients and disorder on chains of various lengths are evaluated and we demonstrate how optimal transport efficiency is determined by both size-independent, as well as size-dependent factors. By discussing how size-dependent influences emerge from finite size effects we establish when these effects are suppressed, and show that a simple power law captures the interplay between size-dependent and size-independent responses. Moving beyond phenomenological pure dephasing, we implement a finite temperature Bloch-Redfield model that captures detailed balance. We show that the relationship between localisation and optimal environmental coupling strength continues to apply at intermediate and high temperature but breaks down in the low temperature limit.


Author(s):  
Ka Un Lao ◽  
Yan Yang ◽  
Robert A. DiStasio

Unique dichotomy of electron confinement and delocalization yields non-additive quantum-size effects in the polarizabilities and dispersion coefficients of the fullerenes.


2009 ◽  
Vol 105 (9) ◽  
pp. 094307 ◽  
Author(s):  
S. M. Binz ◽  
M. Hupalo ◽  
M. C. Tringides

2018 ◽  
Vol 175 ◽  
pp. 06031 ◽  
Author(s):  
M. Della Morte ◽  
A. Francis ◽  
A. Gérardin ◽  
V. Gülpers ◽  
G. Herdoíza ◽  
...  

We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the Lüscher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with Nf = 2 + 1 dynamical flavours and discuss how the long-distance contribution can be accurately constrained by a dedicated spectrum calculation in the iso-vector channel.


Open Physics ◽  
2013 ◽  
Vol 11 (12) ◽  
Author(s):  
Wojciech Ganczarek

AbstractIn this paper we analyze the impact of network size on the dynamics of epidemic spreading. In particular, we investigate the pace of infection in overpopulated systems. In order to do that, we design a model for epidemic spreading on a finite complex network with a restriction to at most one contamination per time step, which can serve as a model for sexually transmitted diseases spreading in some student communes. Because of the highly discrete character of the process, the analysis cannot use the continuous approximation widely exploited for most models. Using a discrete approach, we investigate the epidemic threshold and the quasi-stationary distribution. The main results are two theorems about the mixing time for the process: it scales like the logarithm of the network size and it is proportional to the inverse of the distance from the epidemic threshold.


Author(s):  
Maximilian Beikirch ◽  
Torsten Trimborn

The Levy–Levy–Solomon (LLS) model [M. Levy, H. Levy and S. Solomon, Econ. Lett.45, 103 (1994)] is one of the most influential agent-based economic market models. In several publications this model has been discussed and analyzed. Especially Lux and Zschischang [E. Zschischang and T. Lux, Physica A: Stat. Mech. Appl.291, 563 (2001)] have shown that the model exhibits finite-size effects. In this study, we extend existing work in several directions. First, we show simulations which reveal finite-size effects of the model. Second, we shed light on the origin of these finite-size effects. Furthermore, we demonstrate the sensitivity of the LLS model with respect to random numbers. Especially, we can conclude that a low-quality pseudo-random number generator has a huge impact on the simulation results. Finally, we study the impact of the stopping criteria in the market clearance mechanism of the LLS model.


Sign in / Sign up

Export Citation Format

Share Document