On the Characterization of the Core of a π-Prefrattini Subgroup of a Finite Soluble Group

2019 ◽  
Vol 60 (1) ◽  
pp. 56-61
Author(s):  
X. Yi ◽  
S. F. Kamornikov ◽  
L. Xiao
2021 ◽  
Vol 7 (4) ◽  
pp. 277
Author(s):  
Danny Haelewaters ◽  
Hector Urbina ◽  
Samuel Brown ◽  
Shannon Newerth-Henson ◽  
M. Catherine Aime

Romaine lettuce (Lactuca sativa) is an important staple of American agriculture. Unlike many vegetables, romaine lettuce is typically consumed raw. Phylloplane microbes occur naturally on plant leaves; consumption of uncooked leaves includes consumption of phylloplane microbes. Despite this fact, the microbes that naturally occur on produce such as romaine lettuce are for the most part uncharacterized. In this study, we conducted culture-based studies of the fungal romaine lettuce phylloplane community from organic and conventionally grown samples. In addition to an enumeration of all such microbes, we define and provide a discussion of the genera that form the “core” romaine lettuce mycobiome, which represent 85.5% of all obtained isolates: Alternaria, Aureobasidium, Cladosporium, Filobasidium, Naganishia, Papiliotrema, Rhodotorula, Sampaiozyma, Sporobolomyces, Symmetrospora and Vishniacozyma. We highlight the need for additional mycological expertise in that 23% of species in these core genera appear to be new to science and resolve some taxonomic issues we encountered during our work with new combinations for Aureobasidiumbupleuri and Curvibasidium nothofagi. Finally, our work lays the ground for future studies that seek to understand the effect these communities may have on preventing or facilitating establishment of exogenous microbes, such as food spoilage microbes and plant or human pathogens.


2014 ◽  
Vol 69 ◽  
pp. 34-42 ◽  
Author(s):  
Duygu Nizamogullari ◽  
İpek Özkal-Sanver

2021 ◽  
Author(s):  
René Dreos ◽  
Nati Malachi ◽  
Anna Sloutskin ◽  
Philipp Bucher ◽  
Tamar Juven-Gershon

AbstractMetazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a strict spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters.Author summaryTranscription of genes by the RNA polymerase II enzyme initiates at a genomic region termed the core promoter. The core promoter is a regulatory region that may contain diverse short DNA sequence motifs/elements that confer specific properties to it. Interestingly, core promoter motifs can be located both upstream and downstream of the transcription start site. Variable compositions of core promoter elements have been identified. The initiator (Inr) motif and the downstream core promoter element (DPE) is a combination of elements that has been identified and extensively characterized in fruit flies. Although a few Inr+DPE - containing human promoters have been identified, the presence of transcriptionally important downstream core promoter positions within human promoters has been a matter of controversy in the literature. Here, using a newly-designed motif discovery strategy, we discovered preferred downstream positions in human promoters that resemble fruit fly DPE. Clustering of the corresponding sequence motifs in eight additional species indicated that such promoters could be common to multicellular non-plant organisms. Importantly, functional characterization of the newly discovered preferred downstream positions supports the existence of Inr+DPE-containing promoters in human genes.


2021 ◽  
Vol 12 (3) ◽  
pp. 38-46
Author(s):  
João Fideles de Brito Junior ◽  
Marta Silvana Volpato Sccoti ◽  
Scheila Cristina Biazatti ◽  
Bárbara Luísa Corradi Pereira

In the Amazon many forest species present problems of identification and obtaining botanical material with reproductive structures is not always possible. The macro and microscopic characteristics of the wood of three species of the genus Tachigali Aubl were analyzed in order to determine basic differences among the species. The collection of material was carried at the Forest Management Unit III, in the Flona do Jamari (Jamari National Forest), where we selected arboreal individuals from the species Tachigali poeppigiana Tul., Tachigali setifera (Ducke) Zarucchi & Herend and Tachigali subvelutina (Benth.) Oliveira-Filho, commonly known in Brazil as Tachi Preto (Black Tachi), Tachi Vermelho (Red Tachi) and Tachi Amarelo (Yellow Tachi), respectively, in which the coloring of the core is the main attribute for assigning their vernacular name. Heartwood samples were collected for the making of the specimens. The axial parenchyma was vasicentric and unilateral for T. poeppigiana and T. setifera, and unilateral and sparse for T. subvelutina. Pores were classified as medium and large for T. setifera and T. poeppigiana and very uncommon for T. subvelutina; however, they are medium and very uncommon for the three species. All species showed uniseriate, non-stratified and homogeneous rays. We concluded there are anatomical characteristics that allow the differentiation of the species from the genus Tachigali, which may be used to assist in forest management plans, as well as the surveillance system.


Author(s):  
Rayya A. Al Balushi ◽  
Muhammad S. Khan ◽  
Md. Serajul Haque Faizi ◽  
Ashanul Haque ◽  
Kieran Molloy ◽  
...  

In the crystal structure of the title compound, [Cu4Cl6O(C13H9N)4]·CH2Cl2, the core molecular structure consists of a Cu4 tetrahedron with a central interstitial O atom. Each edge of the Cu4 tetrahedron is bridged by a chlorido ligand. Each copper(II) cation is coordinated to the central O atom, two chlorido ligands and one N atom of the 4-phenylethynylpyridine ligand. In the crystal, the molecules are linked by intermolecular C—H...Cl interactions. Furthermore, C—H...π and π–π interactions also connect the molecules, forming a three-dimensional network. Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H...H and C...H/H...C interactions.


Sign in / Sign up

Export Citation Format

Share Document