Evaluation of Spacecraft Composite Structure Load-Carrying Capability by Shock Test

2021 ◽  
Vol 55 (7) ◽  
pp. 709-716
Author(s):  
O. G. Demenko ◽  
A. S. Birukov ◽  
M. A. Zverev
2021 ◽  
Author(s):  
Lin Yuan ◽  
Jiasheng Zhou ◽  
Haowei Liu ◽  
Nian-Zhong Chen

Abstract Mechanically lined pipe, which was proven to be cost-effective in transporting corrosive hydrocarbons, has been used in many offshore applications. However, one weakness of this product is that the liner is extremely sensitive to geometric imperfections and can wrinkle and collapse under severe loading. As typical damage of the pipeline, the local dent of the lined pipe involves the deformation of both the carrier pipe and the liner, which poses a severe threat to the integrity of the composite structure. In this paper, we developed a numerical framework to study the responses of the lined pipe during indentation and, more importantly, the influence of local dents on the bending capacity of lined pipes. A slight separation between the liner and the carrier pipe was observed during the indentation, depending on the indenter’s geometric feature. Under bending, the liner typically collapsed earlier than the carrier pipe, causing a considerable reduction of the critical curvature and ultimate load-carrying capacity. The evolution of the deformation of the composite structure during the bending process is presented in this paper. Parametric investigations of some vital variables of the problem were also performed to study their influence on the behavior under indentation and the bending capacity of the composite structure.


2019 ◽  
Vol 795 ◽  
pp. 325-332
Author(s):  
Ji Shen Yang ◽  
Hong Yu Qi ◽  
Xiao Guang Yang ◽  
Duo Qi Shi

The research work in this paper is focused on studying the failure behavior of an integral π-shaped laminated composite structure subjected to a bending load. A progressive damage model based on the 3D Tsai-Wu failure criterion and a developed gradual degradation model was employed to simulate and assess the load-carrying capacity, the onset and propagation of damage, and the failure mechanisms. For this unique π-shaped composite structure, disbonding was found to be the dominant damage mode under bending load, and the approximate maximum load could be maintained for a brief time during the final failure due to the gradual loss nature of the load-carrying capacity. The extent of damage was found to be more serious on the side of Rib II compared to the other side.


2012 ◽  
Vol 166-169 ◽  
pp. 2851-2854 ◽  
Author(s):  
Yi Hong Guo ◽  
Zhen Qing Wang

Shear connectors are usually used to connect two different structural materials and to transfer longitudinal shear forces across the materials interface in composite structures. This paper presents an experimental study on the behavior of shear connectors in UHPFRC-NSC composite structure. A new experimental installation (The NSC block is laid on the supporting deck, and the higher UHPFRC block is cantilever, meanwhile the top side of the NSC block is constrained.) is applied. A modified formula that it is proposed to calculate the load carrying capacity of shear connector is given. The experimental results are in good agreement with the calculated results.


2012 ◽  
Vol 204-208 ◽  
pp. 1673-1677
Author(s):  
Sheng Li Tang ◽  
Le Zhou ◽  
Zhang Wu ◽  
Xiao Long Dang

It is a new trend to control landslide by using anti-sliding composite structure of micro-piles combined with other engineering measures. It has been applied in many engineer practices for its convenient, less cost, and high landslide stability increased obviously by the pressure grouting. The paper discussed formation lithology, geologic structure and hydrogeology features of Xining-Jiuzhi highway as an example, according to the specific circumstance of sliding zones in superficial layer and deep layer, we proposed a comprehensive landslide treatment, combined with anti-sliding composite structure of micro-piles, anchor cable frame reinforcing and inclined drain holes. On the basis of analyzing the effect and theory of consolidating the slide by anti-sliding composite structure of micro-piles, we adopted the numerical model of lagrange finite-difference analyzing the stability of landslides and the load-carrying properties of the reinforced structure before and afterwards comparatively. The calculated results and monitoring showed that: the landslides were stable, and the comprehensive treatment of using anti-sliding composite structure of micro-piles has met the expectant control effects.


1995 ◽  
Author(s):  
Ron Dennis ◽  
Alan Smith
Keyword(s):  
Low Cost ◽  

2013 ◽  
Vol 51 (10) ◽  
pp. 729-734 ◽  
Author(s):  
Seol Jeon ◽  
Youngkue Choi ◽  
Hyun-Gyoo Shin ◽  
Hyun Park ◽  
Heesoo Lee ◽  
...  

Author(s):  
Deepak D. ◽  
Nitesh Kumar ◽  
Shreyas P. Shetty ◽  
Saurabh Jain ◽  
Manoj Bhat

The expensive nature of currently used materials in the soft robotic industry demands the consideration of alternative materials for fabrication. This work investigates the performance of RTV-2 grade silicone rubber for fabrication of a soft actuator. Initially, a cylindrical actuator is fabricated using this material and its performance is experimentally assessed for different pressures. Further, parametric variations of the effect of wall thickness and inflation pressure are studied by numerical methods. Results show that, both wall thickness and inflation pressure are influential parameters which affect the elongation behaviour of the actuator. Thin (1.5 mm) sectioned actuators produced 76.97% more elongation compared to thick sectioned, but the stress induced is 89.61 % higher. Whereas, the thick sectioned actuator (6 mm) showed a higher load transmitting capability. With change in wall thickness from 1.5 mm to 6 mm, the elongation is reduced by 76.97 %, 38.35 %, 21.05 % and 11.43 % at pressure 100 kPa, 75 kPa, 50 kPa and 25 kPa respectively. The induced stress is also found reduced by 89.61 %, 86.66 %, 84.46 % and 68.68 % at these pressures. The average load carrying capacity of the actuator is found to be directly proportional to its wall thickness and inflation pressure.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


Sign in / Sign up

Export Citation Format

Share Document