Proposed Calculation Formula of Shear Connectors in UHPFRC-NSC Composite Structure

2012 ◽  
Vol 166-169 ◽  
pp. 2851-2854 ◽  
Author(s):  
Yi Hong Guo ◽  
Zhen Qing Wang

Shear connectors are usually used to connect two different structural materials and to transfer longitudinal shear forces across the materials interface in composite structures. This paper presents an experimental study on the behavior of shear connectors in UHPFRC-NSC composite structure. A new experimental installation (The NSC block is laid on the supporting deck, and the higher UHPFRC block is cantilever, meanwhile the top side of the NSC block is constrained.) is applied. A modified formula that it is proposed to calculate the load carrying capacity of shear connector is given. The experimental results are in good agreement with the calculated results.

2006 ◽  
Vol 326-328 ◽  
pp. 1811-1816 ◽  
Author(s):  
Young Ho Kim ◽  
Jae Ho Jung ◽  
Soon Jong Yoon ◽  
Won Sup Jang

In the construction of composite bridge structures, various types of shear connectors are usually used to provide an efficient load transfer and the composite action of two or more different materials. In the previous work conducted by authors, a new type of the shear connector was introduced, which is the perforated shear connector with flange heads (T-shaped perforated shear connector), and the structural behavior of the shear connector was discussed based on the results of push-out tests. For the practical design of new shear connector, it is necessary to develop the equation for the prediction of the load carrying capacity of the shear connector. In this study, the existing design equations for the Perfobond shear connector were briefly analyzed and the equation for the prediction of the shear capacity of T-shaped perforated shear connector was suggested empirically. By comparing the results obtained by the suggested equation, the existing equations for the Perfobond shear connector, and the experiment, the applicability and effectiveness of the suggested equation was estimated.


2019 ◽  
Vol 29 (3) ◽  
pp. 228-240 ◽  
Author(s):  
Sangeetha Palanivelu

Abstract Steel-concrete composite structures are widely used in the current construction of bridges and multi-storey buildings. The effect of shear connectors in a cold-formed steel-composite beam was studied under flexure. The number of channel connectors in the specimen was varied and the same was compared with a specimen without shear connectors. The performance and failure of cold-formed steel-composite beams were then studied. The presence of shear connectors in the tension zone prevents the formation of cracks which are the major cause of failure in a beam subjected to bending. The load-carrying capacity is greater in a composite beam and an increase in the number of channel connectors from one to five increases the load-carrying capacity by 60 % as compared to a specimen without a connector. A composite beam with five connectors is more ductile, with a ductility factor of 14. The Composite beams were also analysed using the finite element software ANSYS and were found to have good agreement with the experimental results.


2020 ◽  
Vol 92 (6) ◽  
pp. 59-65
Author(s):  
G.P. TONKIH ◽  
◽  
D.A. CHESNOKOV ◽  
◽  

Most of Russian research about composite structure fire resistance are dedicated to the composite slab behavior. The composite beams fire resistance had been never investigated in enough volume: the temperature evaluation within the scope of the actual Russian design codes leads to the significant reduction in the shear connection strength. Meanwhile, there no correlation between the strength decreasing and type of the shear connection. The article provides an overview of the relevant researches and offers some approaches which could take into account bearing capacity reduction of the shear connectors within composite structures design.


2021 ◽  
Author(s):  
Lin Yuan ◽  
Jiasheng Zhou ◽  
Haowei Liu ◽  
Nian-Zhong Chen

Abstract Mechanically lined pipe, which was proven to be cost-effective in transporting corrosive hydrocarbons, has been used in many offshore applications. However, one weakness of this product is that the liner is extremely sensitive to geometric imperfections and can wrinkle and collapse under severe loading. As typical damage of the pipeline, the local dent of the lined pipe involves the deformation of both the carrier pipe and the liner, which poses a severe threat to the integrity of the composite structure. In this paper, we developed a numerical framework to study the responses of the lined pipe during indentation and, more importantly, the influence of local dents on the bending capacity of lined pipes. A slight separation between the liner and the carrier pipe was observed during the indentation, depending on the indenter’s geometric feature. Under bending, the liner typically collapsed earlier than the carrier pipe, causing a considerable reduction of the critical curvature and ultimate load-carrying capacity. The evolution of the deformation of the composite structure during the bending process is presented in this paper. Parametric investigations of some vital variables of the problem were also performed to study their influence on the behavior under indentation and the bending capacity of the composite structure.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
K. N. Lakshmikandhan ◽  
P. Sivakumar ◽  
R. Ravichandran ◽  
S. Arul Jayachandran

The strength of the composite deck slab depends mainly on the longitudinal shear transfer mechanism at the interface between steel and concrete. The bond strength developed by the cement paste is weak and causes premature failure of composite deck slab. This deficiency is effectively overcame by a shear transferring mechanism in the form of mechanical interlock through indentations, embossments, or fastening studs. Development of embossment patterns requires an advanced technology which makes the deck profile expensive. Fastening studs by welding weakens the joint strength and also escalates the cost. The present investigation is attempted to arrive at a better, simple interface mechanism. Three types of mechanical connector schemes are identified and investigated experimentally. All of the three shear connector schemes exhibited full shear interaction with negligible slip. The strength and stiffness of the composite slabs with shear connectors are superior about one and half time compared to these of the conventional reinforced concrete slabs and about twice compared to these of composite slabs without mechanical shear connectors. The scheme2 and scheme3 shear connector mechanisms integrate deck webs and improve strength and stiffness of the deck, which can effectively reduce the cost of formworks and supports efficiently.


2020 ◽  
Vol 327 ◽  
pp. 03004
Author(s):  
D. Santana Sanchez ◽  
A. Mostafa

The present paper discusses the design analysis and limitations of the steering system of a buggy. Many geometrical and performance characteristics of the designed steering system were considered to address the kinematic constraints and load carrying capacity of the steering elements. Ackremann geometry approach was used to assess the limiting steering angle, while Lewis bending formula with the inclusion of dynamic effects was employed to characterise the flexural properties of the rack and pinion steering system. Analytical results were numerically verified using ABAQUS/Explicit nonlinear finite element (FE) package. Good agreement has been achieved between analytical and numerical results in predicting the flexural behaviour of the steering rack and pinion system.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Brian Nyvang Legarth ◽  
Qingda Yang

Failure in elastic dual-phase materials under transverse tension is studied numerically. Cohesive zones represent failure along the interface and the augmented finite element method (A-FEM) is used for matrix cracking. Matrix cracks are formed at an angle of 55 deg−60 deg relative to the loading direction, which is in good agreement with experiments. Matrix cracks initiate at the tip of the debond, and for equi-biaxial loading cracks are formed at both tips. For elliptical reinforcement the matrix cracks initiate at the narrow end of the ellipse. The load carrying capacity is highest for ligaments in the loading direction greater than that of the transverse direction.


2019 ◽  
Vol 795 ◽  
pp. 325-332
Author(s):  
Ji Shen Yang ◽  
Hong Yu Qi ◽  
Xiao Guang Yang ◽  
Duo Qi Shi

The research work in this paper is focused on studying the failure behavior of an integral π-shaped laminated composite structure subjected to a bending load. A progressive damage model based on the 3D Tsai-Wu failure criterion and a developed gradual degradation model was employed to simulate and assess the load-carrying capacity, the onset and propagation of damage, and the failure mechanisms. For this unique π-shaped composite structure, disbonding was found to be the dominant damage mode under bending load, and the approximate maximum load could be maintained for a brief time during the final failure due to the gradual loss nature of the load-carrying capacity. The extent of damage was found to be more serious on the side of Rib II compared to the other side.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2958 ◽  
Author(s):  
Jun Chen ◽  
Wei Wang ◽  
Fa-Xing Ding ◽  
Ping Xiang ◽  
Yu-Jie Yu ◽  
...  

The high-strength bolt shear connector in prefabricated concrete slab has advantages in applications as it reduces time during the construction of steel-concrete composite building structures and bridges. In this research, an innovative and advanced bolt shear connector in steel-concrete composite structures is proposed. To investigate the fundamental mechanical behavior and the damage form, 22 static push-off tests were conducted with consideration of different bolt dimensions, the reserved hole constraint condition, and the dimension of slab holes. A finite element (FE) model was established and verified by using test results, and then the model was utilized to investigate the influence of concrete strength, bolt dimension, yield strength, bolt pretension, as well as length-to-diameter ratio of high strength bolts on the performances of shear connectors. On the basis of FE simulation and test results, new design formulas for the calculation of shear resistance behavior were proposed, and comparisons were made with current standards, including AISC, EN 1994-1-1, GB 50017-2017, and relevant references, to check the calculation efficiency. It is confirmed that the proposed equation is in better agreement with the experimental results.


2020 ◽  
Vol 10 (23) ◽  
pp. 8647
Author(s):  
Mansour Ghalehnovi ◽  
Mehdi Yousefi ◽  
Arash Karimipour ◽  
Jorge de Brito ◽  
Mahdi Norooziyan

The most researches on steel-concrete-steel (SCS) sandwich slabs are to control the cracking of concrete core along with losing weight, and shear connector type. In this study, the behaviour of SCS slabs with bi-directional corrugated-strip shear connectors (CSC) was investigated. One of the most important practical problems of CSCs in SCS slabs is lack of access for another end welding to the second steel faceplate. In this research, plug weld was proposed to provide partial welding of the other end of CSCs to a steel plate. For this reason, three slabs were manufactured using the normal concrete core as a control sample and lightweight concrete (LWC) core with and without steel fibres. The behaviour of these slabs was compared with the behaviour of SCS slabs with J-hook and stud bolt connectors from previous researches. The specimens were tested under a concentrated block load as quasi-statically. Based on the load-displacement relationship at the centre, failure modes, loading capacity, energy absorption, and ductility showed acceptable behaviour for CSC system slabs. There was also a good agreement between the ultimate flexural strength based on experiments and previous research relationships.


Sign in / Sign up

Export Citation Format

Share Document