Influence of Nonlinear Processes on the Time Lag between Changes in the Global Temperature and the Carbon Dioxide Content in the Atmosphere

2021 ◽  
Vol 501 (1) ◽  
pp. 949-954
Author(s):  
K. E. Muryshev ◽  
A. V. Eliseev ◽  
I. I. Mokhov ◽  
A. V. Timazhev ◽  
M. M. Arzhanov ◽  
...  
1991 ◽  
Vol 24 (7) ◽  
pp. 277-284 ◽  
Author(s):  
E. Gomólka ◽  
B. Gomólka

Whenever possible, neutralization of alkaline wastewater should involve low-cost acid. It is conventional to make use of carbonic acid produced via the reaction of carbon dioxide (contained in flue gases) with water according to the following equation: Carbon dioxide content in the flue gas stream varies from 10% to 15%. The flue gas stream may either be passed to the wastewater contained in the recarbonizers, or. enter the scrubbers (which are continually sprayed with wastewater) from the bottom in oountercurrent. The reactors, in which recarbonation occurs, have the ability to expand the contact surface between gaseous and liquid phase. This can be achieved by gas phase dispersion in the liquid phase (bubbling), by liquid phase dispersion in the gas phase (spraying), or by bubbling and spraying, and mixing. These concurrent operations are carried out during motion of the disk aerator (which is a patent claim). The authors describe the functioning of the disk aerator, the composition of the wastewater produced during wet gasification of carbide, the chemistry of recarbonation and decarbonation, and the concept of applying the disk aerator so as to make the wastewater fit for reuse (after suitable neutralization) as feeding water in acetylene generators.


2016 ◽  
Vol 9 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Dionisio H. Malagón-Romero ◽  
Alexander Ladino ◽  
Nataly Ortiz ◽  
Liliana P. Green

Hydrogen is expected to play an important role as a clean, reliable and renewable energy source. A key challenge is the production of hydrogen in an economically and environmentally sustainable way on an industrial scale. One promising method of hydrogen production is via biological processes using agricultural resources, where the hydrogen is found to be mixed with other gases, such as carbon dioxide. Thus, to separate hydrogen from the mixture, it is challenging to implement and evaluate a simple, low cost, reliable and efficient separation process. So, the aim of this work was to develop a polymeric membrane for hydrogen separation. The developed membranes were made of polysulfone via phase inversion by a controlled evaporation method with 5 wt % and 10 wt % of polysulfone resulting in thicknesses of 132 and 239 micrometers, respectively. Membrane characterization was performed using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and ASTM D882 tensile test. Performance was characterized using a 23 factorial experiment using the time lag method, comparing the results with those from gas chromatography (GC). As a result, developed membranes exhibited dense microstructures, low values of RMS roughness, and glass transition temperatures of approximately 191.75 °C and 190.43 °C for the 5 wt % and 10 wt % membranes, respectively. Performance results for the given membranes showed a hydrogen selectivity of 8.20 for an evaluated gas mixture 54% hydrogen and 46% carbon dioxide. According to selectivity achieved, H2 separation from carbon dioxide is feasible with possibilities of scalability. These results are important for consolidating hydrogen production from biological processes.


1973 ◽  
Vol 10 (2) ◽  
pp. 306-315 ◽  
Author(s):  
T. M. L. Wigley

The effect of the addition of gypsum to a solution of calcite in water (or the addition of calcite to a solution of gypsum in water) is determined theoretically for arbitrary temperature, carbon dioxide content, and degree of saturation with respect to calcite (or gypsum). The results can be used to study the chemical evolution of waters flowing through alternating gypsum and limestone strata, to predict conditions which will lead to the precipitation of calcite and/or gypsum, and to predict the chemical evolution of evaporating calcite–gypsum solutions. It is shown that under some circumstances, simultaneous gypsum (or calcite) precipitation and calcite (or gypsum) solution may occur. Coprecipitation of gypsum and calcite is found to be unavoidable if a solution is evaporated to dryness, although the initial precipitate will be a single mineral. The methods used and many of the conclusions drawn are applicable to other systems of two or more minerals.


1957 ◽  
Vol 24 (2) ◽  
pp. 235-241 ◽  
Author(s):  
P. S. Robertson

Some of the factors influencing the concentration of carbon dioxide found in New Zealand Cheddar cheese have been investigated.1. Cheeses made with the use of commercial starters (containing betacocci) are characterized by a rapid increase in their carbon dioxide content during the 2 weeks following manufacture.2. Cheeses made with the use of single strain starters do not change in carbon dioxide content in the first 2 weeks following manufacture, but may ultimately contain as much carbon dioxide as commercial starter cheeses.3. High concentrations of carbon dioxide within a cheese result in an open texture, especially when the carbon dioxide is formed shortly after manufacture.4. The loss of carbon dioxide to the atmosphere is demonstrated by the existence of a carbon dioxide concentration gradient within the cheese.5. Storage of cheese at a lower temperature than is usual results in retarded carbon dioxide formation.


2018 ◽  
Vol 200 ◽  
pp. 269-281 ◽  
Author(s):  
Alessandra de Carvalho Reis ◽  
José Luiz de Medeiros ◽  
Giovani Cavalcanti Nunes ◽  
Ofélia de Queiroz Fernandes Araújo

1929 ◽  
Vol 6 (4) ◽  
pp. 340-349 ◽  
Author(s):  
ALFRED C. REDFIELD ◽  
ROBERT GOODKIND

1. The oxygen and carbon-dioxide content of the arterial and venous blood of the squid, Loligo pealei, have been measured. 2. Using a nomographic method of analysis it is shown that the reciprocal effects of oxygen and carbon dioxide upon the respiratory properties of squid haemocyanin account for one-third of the respiratory exchange. 3. The venous blood is estimated to be 0.13 pH unit more acid than the arterial blood. 4. Death from asphyxiation occurs when the oxygen and carbon-dioxide pressures are such that the arterial blood can combine with only 0.5 to 1.5 volumes per cent, oxygen. Carbon dioxide exerts no toxic effect except through its influence on the oxygenation of the blood. 5. The haemocyanin of the blood is of vital necessity to the squid, because the amount of oxygen which can be physically dissolved in blood is less than the amount which is necessary for the maintenance of life.


1962 ◽  
Vol 17 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Daniel J. Stone

A steady state metabolic alkalosis was induced in two subjects over a period of several days utilizing oral sodium bicarbonate in dosages of 50 g/day. The purpose of inducing steady state metabolic alkalosis was to study the effects of such a state on the respiratory center responses to inspired gas mixtures, containing carbon dioxide, and to contrast these results with the control studies. The experiment was so designed that the arterial pH in both subjects tended to return toward normal in the presence of significant increases in blood bicarbonate. Repeated study of ventilation responses with room air and 4% and 6% carbon dioxide in inspired air revealed a definite and significant decrease in ventilation response to carbon dioxide during the periods of steady state alkalosis as compared to the control periods. Normal responses returned after some time lag. A consistent rise in paCOCO2 occurred with alkalosis, thus demonstrating respiratory compensation. In neither subject was total lung function or gas exchange affected by the alkalosis. The experiment was confirmed on several occasions with reproducible results. Note: (With the Research Assistance of Mary Di Lieto) Submitted on May 22, 1961


Sign in / Sign up

Export Citation Format

Share Document