Note on the History of Contact Mechanics and Friction: Interplay of Electrostatics, Theory of Gravitation and Elasticity from Coulomb to Johnson-Kendall-Roberts Theory of Adhesion

2018 ◽  
Vol 21 (1) ◽  
pp. 1-5 ◽  
Author(s):  
E. Popova ◽  
V. L. Popov
2020 ◽  
Vol 3 (1) ◽  
pp. 266-282
Author(s):  
Niccolò Guicciardini

AbstractRobert Hooke’s theory of gravitation is a promising case study for probing the fruitfulness of Menachem Fisch’s insistence on the centrality of trading zone mediators for rational change in the history of science and mathematics. In 1679, Hooke proposed an innovative explanation of planetary motions to Newton’s attention. Until the correspondence with Hooke, Newton had embraced planetary models, whereby planets move around the Sun because of the action of an ether filling the interplanetary space. Hooke’s model, instead, consisted in the idea that planets move in the void space under the influence of a gravitational attraction directed toward the sun. There is no doubt that the correspondence with Hooke allowed Newton to conceive a new explanation for planetary motions. This explanation was proposed by Hooke as a hypothesis that needed mathematical development and experimental confirmation. Hooke formulated his new model in a mathematical language which overlapped but not coincided with Newton’s who developed Hooke’s hypothetical model into the theory of universal gravitation as published in the Mathematical Principles of Natural Philosophy (1687). The nature of Hooke’s contributions to mathematized natural philosophy, however, was contested during his own lifetime and gave rise to negative evaluations until the last century. Hooke has been often contrasted to Newton as a practitioner rather than as a “scientist” and unfavorably compared to the eminent Lucasian Professor. Hooke’s correspondence with Newton seems to me an example of the phenomenon, discussed by Fisch in his philosophical works, of the invisibility in official historiography of “trading zone mediators,” namely, of those actors that play a role, crucial but not easily recognized, in promoting rational scientific framework change.


PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elena Popova ◽  
Valentin L. Popov
Keyword(s):  

Author(s):  
Dean Rickles

The problem of quantum gravity is often viewed as the most pressing unresolved problem of modern physics, the ‘holy grail’: our theories of spacetime and matter, described respectively by general relativity (Einstein’s theory of gravitation and spacetime) and quantum mechanics (our best theory of matter and the other forces of nature) resist unification. Covered in Deep Mist provides the first book-length treatment of the history of quantum gravity, focusing on its origins and earliest stages of development until the mid-1950s. Readers will be guided through the impacts on the problem of quantum gravity resulting from changes in the two ingredient theories, quantum theory and general relativity, which were themselves still under construction in the years studied. We examine how several of the core approaches of today were formed in an era when the field was highly unfashionable. The book aims to be accessible to a broad range of readers and goes beyond a merely technical examination to include social and cultural factors involved in the changing fortunes of the field. Suitable for both newcomers and seasoned quantum gravity professionals, the book will shine new light on this century old, unresolved problem.


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Valentin L. Popov

AbstractThe history of the following note is as follows. In 2003, I invited Kenneth Johnson to Berlin to give a talk on adhesion in a seminar at the Institute of Mechanics. His lecture on the topic "Mechanics of adhesion of spherical surfaces" took place on Monday, January 26, 2004. In the run-up to the seminar, Professor Johnson sent me a historical note dated November 18, 2003. In my opinion, this note, which was written in the form of a paper, may be of interest for experts in contact mechanics and tribology. Prof. Johnson did not publish it, so it remained a private communication. For a publication he might have made a revision and would possibly have credited other important contributions. But this we can only guess at, and therefore the note is published below in the form I received it from Kenneth L. Johnson, with only a few misprints corrected. It is interesting as a historical document from Ken Johnson, who played a key role in development of theory of adhesive contacts.


Author(s):  
Hanoch Gutfreund ◽  
Jürgen Renn ◽  
John Stachel

This richly annotated facsimile edition of “The Foundation of General Relativity” introduces a new generation of readers to Albert Einstein's theory of gravitation. Written in 1915, this remarkable document is a watershed in the history of physics and an enduring testament to the elegance and precision of Einstein's thought. Presented here is a beautiful facsimile of Einstein's original handwritten manuscript, along with its English translation and an insightful page-by-page commentary that places the work in historical and scientific context. The concise introduction traces Einstein's intellectual odyssey from the special to the general theory of relativity, and the chapter “The Charm of a Manuscript” provides a delightful meditation on the varied afterlife of Einstein's text. The book also includes a biographical glossary of the figures discussed in the book, a comprehensive bibliography, suggestions for further reading, and numerous photos and illustrations throughout.


1993 ◽  
Vol 6 (1) ◽  
pp. 83-106
Author(s):  
Jean Eisenstaedt

The ArgumentThe question of the possible existence of black holes is closely related to the question of the action of gravitation on the propagation of light. It has been raised recurrently from the when that Newton referred to a possible bending of light in his Opticks. And it relies on apparently simple questions: Is light subject to gravitation? What is the effect of a gravitational field on the propagation of light? Could a particle of light emitted by a star be retained by its gravitational field?From the end of the 1960s, the black hole idea has had a very important place in the relativistic literature, not to speak of the popularization of the theory. It turned out to be not only an important concept but also a tool that permitted us to understand general relativity better, indeed a tool that contributed greatly to changing the interpretation of Einstein's theory of gravitation. Here too I want to use this concept of the black hole to assist our understanding of the history of general relativity: the black hole is a fundamental milestone in the evolution of general relativity.


Sign in / Sign up

Export Citation Format

Share Document