Potentiometric sensors based on new active components in the multisensor determination of homologues anionic surfactants

2017 ◽  
Vol 72 (4) ◽  
pp. 421-429 ◽  
Author(s):  
N. M. Makarova ◽  
E. G. Kulapina
2021 ◽  
Vol 87 (5) ◽  
pp. 5-13
Author(s):  
E. G. Kulapina ◽  
A. E. Dubasova ◽  
O. I. Kulapina ◽  
V. D. Ankina

Arrays of potentiometric sensors including developed solid-contact unmodified and modified sensors based on tetradecylammonium associates with complex compounds of silver (1) and some β-lactam antibiotics (cefazoline, cefuroxime, cefotaxime (n = 3 – 6)) are proposed; polyaniline and copper oxide being modifiers. The main electroanalytic properties of the sensors are determined (the range of the determined concentrations in antibiotic solutions 1 × 10–4 – 0.1 M, 46.3 < S < 48, Cmin = n × 10–5 М, response time 4 – 10 sec, potential drift 4 – 6 mV/day, service life — 2 months). It is shown that modification of the membrane surfaces brings the steepness of the electrode functions to Nernst-values for single-charged ions of the antibiotics under study; reduces the response time and the detection limits, the linearity intervals of the electrode functions being the same. The potentiometric selectivity coefficients of unmodified and modified sensors based on different electrode active components (EAC) to the studied cephalosporins in the presence of interfering antibiotics are close to unity; cross sensitivity parameters for the considered sensors (the average slope of the electrode function of the sensor Sav, the unselectivity factor F, and the reproducibility factor K) are 46.3 < S (mV/pC) < 48; 0.85 < F < 0.90; 144 < K < 170, respectively. Application of sensors in the multisensory analysis of model mixtures of cephalosporin antibiotics is shown. Method of artificial neural networks (ANN) is used for processing of analytical signals. The correctness of the determination is carried out using «spike tests» on the reference model mixtures (the relative error of the determination does not exceed 12 %).


Author(s):  
Elena G. Kulapina ◽  
◽  
Anastasia E. Dubasova ◽  
Olga I. Kulapina ◽  
Vlada D. Ankina ◽  
...  

Electroanalytical properties of unmodified and modified by polyaniline and by CuO nanoparticles solid-contact potentiometric sensors which are based on associates of tetradecylammonium with complex compounds of silver (I) with cephuroxime, cephotaxime and cephazoline Ag(β-lac)2TDA in solutions of corresponding antibiotics were studied. It was revealed that Ag(β-lac)2TDA –based sensors had no specificity to the basic ion but showed sensitivity to other cephalosporins. Taking into account the potentiometric selectivity coefficients and cross-sensitivity parameters of sensors based on different electrode-active components, their use for creating «electronic tongue» multi-sensor systems was shown. Arrays of low-selective potentiometric sensors were created for separate determination of cephazoline and cephotaxime in two-component model mixtures at concentration intervals of 2,5·10-4 – 0,01 М. The method of artificial neural networks was used for processing analytical signals (the relative error of determination not exceeding 13%).


Author(s):  
Marija Jozanović ◽  
Nikola Sakač ◽  
Maja Karnaš ◽  
Martina Medvidović-Kosanović

2019 ◽  
Vol 15 (2) ◽  
pp. 130-137
Author(s):  
Hui Jiang ◽  
Lianhao Fu ◽  
Yu Wang ◽  
Shaozhi Wang ◽  
Xiaoxu Zhang ◽  
...  

Background: Jingzhiguanxin (JZGX) tablet, a traditional Chinese prescription, is commonly used for treating coronary heart disease and angina pectoris in the clinic. There are six active components (Danshensu (DSS), Protocatechuic aldehyde (PD), Paeoniflorin (PF), Ferulic acid (FA), Salvianolic acid B (Sal B) and Tanshinone IIA (TA)) in JZGX tablet. </P><P> Objective: In this paper, a simple and reliable method was used for simultaneous determining the six active components by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Methods: These six active components were separated on an Agilent Zorbax Eclipse XDB-C18 column (150 mmx4.6 mm, 5 µm) at 30 °C. Acetonitrile (A), methanol (B) and 0.5% H3PO4 aqueous solution (C) were used as mobile phase for gradient elution. The flow rate was 1 mL/min and the detection wavelengths were set at 280 nm for DSS, PD and Sal B, 230 nm for PF, 320 nm for FA and 270 nm for TA, respectively. Results: All of the six components showed good linearity regressions (r2≥0.9997) in the detected concentration range. The recovery rates and coefficient of variation (CV) for all analytes were 98.66%- 100.18% and 0.75%-1.89%, respectively. This method was successfully applied to simultaneously determine the six components in JZGX tablet from different batches and manufacturers. Conclusion: The validated method can be used in routine quality control analysis of JZGX tablet without any interference.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 479
Author(s):  
Shihan Wang ◽  
Yuanshuai Gan ◽  
Hong Kan ◽  
Xinxin Mao ◽  
Yongsheng Wang

As one of the featured products in northeast China, Oviductus Ranae has been widely used as a nutritious food, which contains a variety of bioactive unsaturated fatty acids (UFAs). It is necessary to establish a scientific and reliable determination method of UFA contents in Oviductus Ranae. In this work, six principal UFAs in Oviductus Ranae, namely eicosapentaenoic acid (EPA), linolenic acid (ALA), docosahexaenoic acid (DHA), arachidonic acid (ARA), linoleic acid (LA) and oleic acid (OA), were identified using UPLC-MS/MS. The UFAs identified in Oviductus Ranae were further separated based on the optimized RP-HPLC conditions. Quantitative analysis of multi-components by single-marker (QAMS) method was implemented in content determination of EPA, ALA, DHA, ARA and OA, where LA was used as the internal standard. The experiments based on Taguchi design verified the robustness of the QAMS method on different HPLC instruments and chromatographic columns. The QAMS and external standard method (ESM) were used to calculate the UFA content of 15 batches of Oviductus Ranae samples from different regions. The relative error (r < 0.73%) and cosine coefficient showed that the two methods obtained similar contents, and the method validations met the requirements. The results showed that QAMS can comprehensively and effectively control the quality of UFAs in Oviductus Ranae which provides new ideas and solutions for studying the active components in Oviductus Ranae.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3627
Author(s):  
Nikola Sakač ◽  
Dubravka Madunić-Čačić ◽  
Dean Marković ◽  
Lucija Hok ◽  
Robert Vianello ◽  
...  

A 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair implemented in DHBI-TPB surfactant sensor was used for the potentiometric quantification of anionic surfactants in detergents and commercial household care products. The DHBI-TPB ion-pair was characterized by FTIR spectroscopy and computational analysis which revealed a crucial contribution of the C–H∙∙∙π contacts for the optimal complex formation. The DHBI-TPB sensor potentiometric response showed excellent analytical properties and Nernstian slope for SDS (60.1 mV/decade) with LOD 3.2 × 10−7 M; and DBS (58.4 mV/decade) with LOD 6.1 × 10−7 M was obtained. The sensor possesses exceptional resistance to different organic and inorganic interferences in broad pH (2–10) range. DMIC used as a titrant demonstrated superior analytical performances for potentiometric titrations of SDS, compared to other tested cationic surfactants (DMIC > CTAB > CPC > Hyamine 1622). The combination of DHBI-TPB sensor and DMIC was successfully employed to perform titrations of the highly soluble alkane sulfonate homologues. Nonionic surfactants (increased concentration and number of EO groups) had a negative impact on anionic surfactant titration curves and a signal change. The DHBI-TPB sensor was effectively employed for the determination of technical grade anionic surfactants presenting the recoveries from 99.5 to 101.3%. The sensor was applied on twelve powered samples as well as liquid-gel and handwashing home care detergents containing anionic surfactants. The obtained results showed good agreement compared to the outcomes measured by ISE surfactant sensor and a two-phase titration method. The developed DHBI-TPB surfactant sensor could be used for quality control in industry and has great potential in environmental monitoring.


1972 ◽  
Vol 21 (4) ◽  
pp. 517-521 ◽  
Author(s):  
Noriko SHINOZUKA ◽  
Hajime SUZUKI ◽  
Shigeo HAYANO

Sign in / Sign up

Export Citation Format

Share Document