Hydrogen bonds in the crystal structures of vanadyl phosphates Rb(VO2)[HPO4] and CsAl(VO)[PO4]2(H2O)

2012 ◽  
Vol 57 (5) ◽  
pp. 722-732 ◽  
Author(s):  
O. V. Yakubovich ◽  
I. Steele ◽  
E. V. Yakovleva ◽  
O. V. Dimitrova
2021 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Evgeny V. Nazarchuk ◽  
Dmitri O. Charkin ◽  
Oleg I. Siidra

Three new uranyl sulfates, [pyH](H3O)[(UO2)3(SO4)4(H2O)2] (1), [pyH]2[(UO2)6(SO4)7(H2O)] (2), and [pyH]2[(UO2)2(SO4)3] (3), were produced upon hydrothermal treatment and successive isothermal evaporation. 1 is monoclinic, P21/c, a = 14.3640(13), b = 10.0910(9), c = 18.8690(17) Å, β = 107.795(2), V = 2604.2(4) Å3, R1 = 0.038; 2 is orthorhombic, C2221, a = 10.1992(8), b = 18.5215(14), c = 22.7187(17) Å, V = 4291.7(6) Å3, R1 = 0.030; 3 is orthorhombic, Pccn, a = 9.7998(8), b = 10.0768(8), c = 20.947(2) Å, V = 2068.5(3) Å3, R1 = 0.055. In the structures of 1 and 2, the uranium polyhedra and SO4 tetrahedra share vertices to form ∞3[(UO2)3(SO4)4(H2O)2]2− and ∞3[(UO2)6(SO4)7(H2O)]2− frameworks featuring channels (12.2 × 6.7 Å in 1 and 12.9 × 6.5 Å in 2), which are occupied by pyridinium cations. The structure of 3 is comprised of ∞2[(UO2)2(SO4)3]2− layers linked by hydrogen bonds donated by pyridinium cations. The compounds 1–3 are formed during recrystallization processes, in which the evaporation of mother liquor leads to a stepwise loss of hydration water.


Author(s):  
Zhe An ◽  
Jing Gao ◽  
William T. A. Harrison

The syntheses and crystal structures of 0.25-aqua(benzene-1,4-dicarboxylato-κ2O,O′)bis(sparfloxacin-κ2O,O′)manganese(II) dihydrate, [Mn(C8H4O4)(C19H22F2N4O3)2(H2O)0.25]·2H2O or [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O, (I), and bis(sparfloxacin-κ2O,O′)copper(II) benzene-1,4-dicarboxylate dihydrate, [Cu(C19H22F2N4O3)2](C8H4O4)·2H2O or [Cu(Hspar)2](bdc)·2H2O, (II), are reported (Hspar = sparfloxacin and bdc = benzene-1,4-dicarboxylate). The Mn2+ion in (I) is coordinated by twoO,O′-bidentate Hspar neutral molecules (which exist as zwitterions) and anO,O′-bidentate bdc dianion to generate a distorted MnO6trigonal prism. A very long bond [2.580 (12) Å] from the Mn2+ion to a 0.25-occupied water molecule projects through a square face of the prism. In (II), the Cu2+ion lies on a crystallographic inversion centre and a CuO4square-planar geometry arises from its coordination by twoO,O′-bidentate Hspar molecules. The bdc dianion acts as a counter-ion to the cationic complex and does not bond to the metal ion. The Hspar ligands in both (I) and (II) feature intramolecular N—H...O hydrogen bonds, which closeS(6) rings. In the crystals of both (I) and (II), the components are linked by N—H...O, O—H...O and C—H...O hydrogen bonds, generating three-dimensional networks.


Author(s):  
Amila M. Abeysekera ◽  
Boris B. Averkiev ◽  
Pierre Le Magueres ◽  
Christer B. Aakeröy

The roles played by halogen bonds and hydrogen bonds in the crystal structures of N-(pyridin-2-yl)amides were evaluated and rationalised in the context of calculated molecular electrostatic potentials.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Christoph Ludwig Teske ◽  
Huayna Terraschke ◽  
Sebastian Mangelsen ◽  
Wolfgang Bensch

Abstract The title compounds were prepared by precipitation from acidic solutions of the reactants in acetone/water. Bi(S2CNH2)2Cl (1) crystallizes in the non-centrosymmetric trigonal space group P32 with a = 8.6121(3) and c = 11.1554(4) Å, Z = 3; Bi(S2NH2)2SCN (2) in P21/c (monoclinic) with a = 5.5600(2), b = 14.3679(5), c = 12.8665(4) Å, and β = 90.37(3)°. In the crystal structure of 1 Bi3+ is in a sevenfold coordination of two bidentate and one monodentate S2CHNH2 − anions with an asymmetric coordination pattern of five Bi–S and two Bi–Cl− bonds. The linkage of these polyhedra via common Cl–S edges leads to a 1D polymeric structure with undulated chains propagating in the direction [001]. These chains are linked by strong and medium strong hydrogen bonds forming the 3D crystal structure. In the crystal structure of 2 the Bi3+ cation is in an eightfold coordination. The polyhedron can be described as a significantly distorted tetragonal anti-prism, capped by an additional S atom. Two of these prisms share a common quadrilateral face to form a “prism-double” (Bi2S10N2). These building units are linked by common edges, and the resulting 1D infinite angulated chains propagate along [100]. By contrast to organo-dithiocarbamate compounds, where C–H···X bridges are dominant, the interchain connections in the crystal structures of 1 and 2 are formed exclusively via N–H···S, N–H···Cl, and N–H···N interactions, generating the 3D networks. A significant eccentricity of the Bi3+ cation in the crystal structures of both complexes is observed. Both compounds emit light in the orange range of the electromagnetic spectrum.


1982 ◽  
Vol 37 (11) ◽  
pp. 1393-1401 ◽  
Author(s):  
Beatrix Milewski-Mahrla ◽  
Hubert Schmidbaur

Reactions of pentamethylantimony (CH3)5Sb with carboxylic acids in the molar ratio 1:2 afford one equivalent of methane and essentially quantitative yields of crystalline tetramothylstibonium hydrogendicarboxylates. Six new compounds of this series have been synthesized using benzoic, o-phthalic, salicylic, 4-ethoxy-salicylic, oxalic, and malic acid, and characterized by analytical and spectroscopic data. An ionic structure with strong hydrogen bonds in the anionic components is proposed.The crystal structures of the hydrogen-dibenzoato (1), hydrogen-ortho-plithalato (2) and 4-ethoxy-hydrogen-salicylate (3) were determined by single crystal X-ray diffraction. The compounds can be described as having ionic lattices with some donor-acceptor inter­actions between the stibonium centers and the carboxylate oxygen atoms. The anions are characterized by strong hydrogen bonds O...H...O. Thus, the (CH3)4Sb-tetrahedron in 1 is distorted by two benzoate oxygon atoms (at 304(2) and 340(2) pin). The cation in 2 is largely undistorted and the anion has a hydrogenphthalate hydrogen bond of d(O...H...O) = 232 pm. The cation-anion contact in 3 is as short as d(Sb-O) = 289 pm rendering the Sb atom pentacoordinate.


2014 ◽  
Vol 70 (10) ◽  
pp. 998-1002 ◽  
Author(s):  
Mehrdad Pourayoubi ◽  
Atekeh Tarahhomi ◽  
Arnold L. Rheingold ◽  
James A. Golen

InN,N,N′,N′-tetraethyl-N′′-(4-fluorobenzoyl)phosphoric triamide, C15H25FN3O2P, (I), andN-(2,6-difluorobenzoyl)-N′,N′′-bis(4-methylpiperidin-1-yl)phosphoric triamide, C19H28F2N3O2P, (II), the C—N—C angle at each tertiary N atom is significantly smaller than the two P—N—C angles. For the other new structure,N,N′-dicyclohexyl-N′′-(2-fluorobenzoyl)-N,N′-dimethylphosphoric triamide, C21H33FN3O2P, (III), one C—N—C angle [117.08 (12)°] has a greater value than the related P—N—C angle [115.59 (9)°] at the same N atom. Furthermore, for most of the analogous structures with a [C(=O)NH]P(=O)[N(C)(C)]2skeleton deposited in the Cambridge Structural Database [CSD; Allen (2002).Acta Cryst.B58, 380–388], the C—N—C angle is significantly smaller than the two P—N—C angles; exceptions were found for four structures with theN-methylcyclohexylamide substituent, similar to (III), one structure with the seven-membered cyclic amide azepan-1-yl substituent and one structure with anN-methylbenzylamide substituent. The asymmetric units of (I), (II) and (III) contain one molecule, and in the crystal structures, adjacent molecules are linkedviapairs of N—H...O=P hydrogen bonds to form dimers.


1999 ◽  
Vol 55 (12) ◽  
pp. 2005-2012 ◽  
Author(s):  
Anirban Ghosh ◽  
Manju Bansal

AA·TT and GA·TC dinucleotide steps in B-DNA-type oligomeric crystal structures and in protein-bound DNA fragments (solved using data with resolution <2.6 Å) show very small variations in their local dinucleotide geometries. A detailed analysis of these crystal structures reveals that in AA·TT and GA·TC steps the electropositive C2—H2 group of adenine is in very close proximity to the keto O atoms of both the pyrimidine bases in the antiparallel strand of the duplex structure, suggesting the possibility of intra-base pair as well as cross-strand inter-base pair C—H...O hydrogen bonds in the DNA minor groove. The C2—H2...O2 hydrogen bonds in the A·T base pairs could be a natural consequence of Watson–Crick pairing. However, the cross-strand interactions between the bases at the 3′-end of the AA·TT and GA·TC steps obviously arise owing to specific local geometry of these steps, since a majority of the H2...O2 distances in both data sets are considerably shorter than their values in the uniform fibre model (3.3 Å) and many are even smaller than the sum of the van der Waals radii. The analysis suggests that in addition to already documented features such as the large propeller twist of A·T base pairs and the hydration of the minor groove, these C2—H2...O2 cross-strand interactions may also play a role in the narrowing of the minor groove in A-tract regions of DNA and help explain the high structural rigidity and stability observed for poly(dA)·poly(dT).


2017 ◽  
Vol 73 (10) ◽  
pp. 1409-1413 ◽  
Author(s):  
Robert Rosin ◽  
Wilhelm Seichter ◽  
Monika Mazik

The syntheses and crystal structures ofN-(7-bromomethyl-1,8-naphthyridin-2-yl)acetamide dioxane hemisolvate, C11H10BrN3O·0.5C4H8O2, (I), and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-yl)acetamide] dioxane hemisolvate, 2C11H9Br2N3O·0.5C4H8O2, (II), are described. The molecules adopt a conformation with the N—H hydrogen pointing towards the lone electron pair of the adjacent naphthyridine N atom. The crystals of (I) are stabilized by a three-dimensional supramolecular network comprising N—H...N, C—H...N and C—H...O hydrogen bonds, as well as C—Br...π halogen bonds. The crystals of compound (II) are stabilized by a three-dimensional supramolecular network comprising N—H...N, C—H...N and C—H...O hydrogen bonds, as well as C—H...π contacts and C—Br...π halogen bonds. The structure of the substituent attached in the 7-position of the naphthyridine skeleton has a fundamental influence on the pattern of intermolecular noncovalent bonding. While the Br atom of (I) participates in weak C—Br...Oguestand C—Br...π contacts, the Br atoms of compound (II) are involved in host–host interactionsviaC—Br...O=C, C—Br...N and C—Br...π bonding.


Author(s):  
Christopher J. Kingsbury ◽  
Keith J. Flanagan ◽  
Marc Kielmann ◽  
Brendan Twamley ◽  
Mathias O. Senge

The crystal structures of the title compounds, two solvates (CHCl3 and THF) of a symmetric and highly substituted porphyrin, C44H2Br8F20N4 or OBrTPFPP, are described. These structures each feature a non-planar porphyrin ring, exhibiting a similar conformation of the strained ring independent of solvent identity. These distorted porphyrins are able to form hydrogen bonds and sub-van der Waals halogen interactions with enclathrated solvent; supramolecular interactions of proximal macrocycles are additionally affected by solvent choice. The crystal studied for compound 1·CHCl3 was refined as an inversion twin. One pentafluorophenyl group was modelled as disordered over two sites [occupancy ratio = 0.462 (7):0.538 (7)]. The chloroform solvate was also modelled as disordered over two orientations [occupancy ratio = 0.882 (7): 0.118 (7).


Author(s):  
Vasant S. Naik ◽  
Venkataraya Shettigar ◽  
Tyler S. Berglin ◽  
Jillian S. Coburn ◽  
Jerry P. Jasinski ◽  
...  

In the molecules of the title compounds, (2E)-1-(3-bromo-thiophen-2-yl)-3-(2-methoxyphenyl)prop-2-en-1-one, C14H11BrO2S, (I), which crystallizes in the space groupP-1 with four independent molecules in the asymmetric unit (Z′ = 8), and (2E)-1-(3-bromothiophen-2-yl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one, C15H13BrO3S, (II), which crystallizes withZ′ = 8 in the space groupI2/a, the non-H atoms are nearly coplanar. The molecules of (I) pack with inversion symmetry stacked diagonally along thea-axis direction. Weak C—H...Br intramolecular interactions in each of the four molecules in the asymmetric unit are observed. In (II), weak C—H...O, bifurcated three-center intermolecular interactions forming dimers along with weak C—H...π and π–π stacking interactions are observed, linking the molecules into sheets along [001]. A weak C—H...Br intramolecular interaction is also present. There are no classical hydrogen bonds present in either structure.


Sign in / Sign up

Export Citation Format

Share Document