Low-frequency instabilities of collisionless plasma and the 16-moment approximation

2013 ◽  
Vol 39 (12) ◽  
pp. 1026-1034 ◽  
Author(s):  
N. S. Dzhalilov ◽  
V. D. Kuznetsov
1973 ◽  
Vol 51 (24) ◽  
pp. 2604-2611 ◽  
Author(s):  
H. E. Wilhelm

Based on the Lenard–Balescu equation, the interaction integral for the intercomponent momentum transfer in a two-component, collisionless plasma is evaluated in closed form. The distribution functions of the electrons and ions are represented in the form of nonisothermal, displaced Max wellians corresponding to the 5-moment approximation. As an application, the transport of electrical current in an electric field is discussed for infrasonic up to sonic electron–ion drift velocities.


2016 ◽  
Vol 82 (6) ◽  
Author(s):  
E. Tassi ◽  
P. L. Sulem ◽  
T. Passot

Reduced models are derived for a strongly magnetized collisionless plasma at scales which are large relative to the electron thermal gyroradius and in two asymptotic regimes. One corresponds to cold ions and the other to far sub-ion scales. By including the electron pressure dynamics, these models improve the Hall reduced magnetohydrodynamics (MHD) and the kinetic Alfvén wave model of Boldyrev et al. (2013 Astrophys. J., vol. 777, 2013, p. 41), respectively. We show that the two models can be obtained either within the gyrofluid formalism of Brizard (Phys. Fluids, vol. 4, 1992, pp. 1213–1228) or as suitable weakly nonlinear limits of the finite Larmor radius (FLR)–Landau fluid model of Sulem and Passot (J. Plasma Phys., vol 81, 2015, 325810103) which extends anisotropic Hall MHD by retaining low-frequency kinetic effects. It is noticeable that, at the far sub-ion scales, the simplifications originating from the gyroaveraging operators in the gyrofluid formalism and leading to subdominant ion velocity and temperature fluctuations, correspond, at the level of the FLR–Landau fluid, to cancellation between hydrodynamic contributions and ion finite Larmor radius corrections. Energy conservation properties of the models are discussed and an explicit example of a closure relation leading to a model with a Hamiltonian structure is provided.


1986 ◽  
Vol 35 (3) ◽  
pp. 431-447 ◽  
Author(s):  
S. Peter Gary

This paper considers the linear theory of waves near and below the ion cyclotron frequency in an isothermal electron-ion Vlasov plasma which is isotropic, homogeneous and magnetized. Numerical solutions of the full dispersion equation for the magnetosonic/whistler and Alfvén/ion cyclotron modes at βi = 1·0 are presented, and the polarizations, compressibilities, helicities, ion Alfvén ratios and ion cross-helicities are exhibited and compared. At sufficiently large βi and θ, the angle of propagation with respect to the magnetic field, the real part of the polarization of the Alfvén/ion cyclotron wave changes sign, so that, for such parameters, this mode is no longer left-hand polarized. The Alfvén/ion cyclotron mode becomes more compressive as the wavenumber ulereases, whereas the magnetosonic/whistler becomes more compressive with increasing θ, At oblique propagation, the helicity of both modes approaches zero in the long-wavelength limit; in contrast, the ion cross-helicity is of order unity for the Alfvén/ion cyclotron wave and decreases as θ increases for the magnetosonic/whistler mode.


2004 ◽  
Vol 53 (8) ◽  
pp. 2644
Author(s):  
Zhou Guo-Cheng ◽  
Cao Jin-Bin ◽  
Wang De-Ju ◽  
Cai Chun-Lin

Radio Science ◽  
1986 ◽  
Vol 21 (3) ◽  
pp. 421-428 ◽  
Author(s):  
R. Godard ◽  
J. G. Laframboise

2020 ◽  
Author(s):  
Lican Shan ◽  
Aimin Du ◽  
Bruce Tsurutani ◽  
Yasong Ge ◽  
Quanming Lu ◽  
...  

<p>Collisionless plasma shocks (CPSs), forming when supersonic plasma streams encounter a magnetized obstacle, are invoked to explain the acceleration of ubiquitously energetic cosmic rays. It has long been theorized from magnetohydrodynamics, but not directly observed that the CPSs develop from the growth of small-amplitude, low-frequency plasma waves which excited by reflected ion beams from the obstacle. We present in situ observations of an entire formation sequence of the periodic plasma shocks by the MAVEN spacecraft’s magnetic field and particle instruments. The magnetometer first detected small-amplitude circularly polarized magnetosonic waves that further steepened and eventually evolved into periodic shocks. Moreover, differing from the traditional understanding, characterizations of the fast mode waves show that the free energy of the wave/shock generation is provided by newborn protons, and the increasing sunward proton fluxes provided persistent energy for wave steepening. The unusual evidence presents itself from the combination of two circumstances: radial-aligned (Sun-Mars) magnetic fields and Martian atmospheric atom (hydrogen) photoionization and solar wind pickup. These observations lead to the conclusion that newborn ions play a crucial role in the formation process of some CPSs in the astrophysical and space plasma.</p>


2018 ◽  
Vol 36 (6) ◽  
pp. 1563-1576 ◽  
Author(s):  
Rudolf A. Treumann ◽  
Wolfgang Baumjohann

Abstract. Based on now “historical” magnetic observations, supported by few available plasma data, and wave spectra from the AMPTE-IRM spacecraft, and also on “historical” Equator-S high-cadence magnetic field observations of mirror modes in the magnetosheath near the dayside magnetopause, we present observational evidence for a recent theoretical evaluation by Noreen et al. (2017) of the contribution of a global (bulk) electron temperature anisotropy to the evolution of mirror modes, giving rise to a separate electron mirror branch. We also refer to related low-frequency lion roars (whistlers) excited by the trapped resonant electron component in the high-temperature anisotropic collisionless plasma of the magnetosheath. These old data most probably indicate that signatures of the anisotropic electron effect on mirror modes had indeed already been observed long ago in magnetic and wave data, though they had not been recognised as such. Unfortunately either poor time resolution or complete lack of plasma data would have inhibited the confirmation of the required pressure balance in the electron branch for unambiguous confirmation of a separate electron mirror mode. If confirmed by future high-resolution observations (like those provided by the MMS mission), in both cases the large mirror mode amplitudes suggest that mirror modes escape quasilinear saturation, being in a state of weak kinetic plasma turbulence. As a side product, this casts as erroneous the frequent claim that the excitation of lion roars (whistlers) would eventually saturate the mirror instability by depleting the bulk temperature anisotropy. Whistlers, excited in mirror modes, just flatten the anisotropy of the small population of resonant electrons responsible for them, without having any effect on the global electron-pressure anisotropy, which causes the electron branch and by no means at all on the ion-mirror instability. For the confirmation of both the electron mirror branch and its responsibility for trapping of electrons and resonantly exciting high-frequency whistlers, also known as lion roars, high time- and energy-resolution observations of electrons (as provided for instance by MMS) are required.


1966 ◽  
Vol 44 (12) ◽  
pp. 2973-2999 ◽  
Author(s):  
Jiří Teichmann

Small-amplitude electromagnetic wave propagation has been studied in a collisionless plasma containing electrons and positive and negative ions having a different charge-to-mass ratio. The Chew–Goldberger–Low approximation is used for an unbounded, homogeneous plasma in a uniform magnetic field under the assumption of charge neutrality. The analysis of the dispersion relation shows new branches of oscillations, in the zero-temperature limit as well. The classification of waves is presented using the Clemmow–Mullay–Allis diagrams calculated for several plasmas of interest: the laboratory Cs+ Cl− and Cl+ Cl− plasmas and plasma forming the D layer in the ionosphere. New resonances and stop bands have been found for the right-hand polarized wave and the extraordinary wave in the low-frequency region. The isotropic wave propagation at the crossover frequencies and for degenerate plasma is discussed.The dynamics of particles is discussed and the frequency regions in which the positive and negative ions move in opposite phase are given.


1992 ◽  
Vol 48 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Yu. M. Aliev ◽  
V. Yu. Bychenkov ◽  
M. S. Jovanović ◽  
A. A. Frolov

A kinetic theory of nonlinear currents, quasi-stationary electric and magnetic fields and the ponderomotive effect of high-frequency electromagnetic radiation on a collisionless plasma is developed. General expressions for nonlinear current densities, fields and ponderomotive forces that are applicable in a broad range of space-time scales, characteristie of low-frequency motion in plasma, are obtained. These expressions are compared with the results of previous papers.


Sign in / Sign up

Export Citation Format

Share Document