The Effect of New Phase Growth Kinetics and Pressure on the Distribution of Components in Phase Transitions

Author(s):  
A. P. Gus’kov
2014 ◽  
Vol 353 ◽  
pp. 269-274
Author(s):  
B. Parditka ◽  
Mariana Verezhak ◽  
Mohammed Ibrahim

Abstract. It is shown, by the combination of SNMS, (Secondary Neutral Mass Spectrometry), XRD, XPS and APT (Atom Probe Technique) that the growth of the Cu3Si crystalline layer at 408 K between the amorphous Si and nanocrystalline Cu thin films follows a linear law and the shifts of the Cu3Si/Cu and Cu3Si/a-Si interfaces approximately equally contributed to the growth of this phase. It is also illustrated that the Si atoms diffuse fast into the grain boundaries of the nanocrystalline Cu, leading to Si segregation. Both the SNMS and APT results indicate that even during the deposition of Cu on the amorphous Si an intermixed region is formed at the interface. This region easily transforms into a homogeneous Cu3Si crystalline reaction layer subsequently which further grows following apparently an interface controlled linear kinetics. Similar experiments performed in Co/a-Si system to study the formation and growth kinetics of the intermetallic phase. However, interestingly, homogenous formation of the new phase at the Co/a-Si interface was not always observed.


2000 ◽  
Vol 112 (22) ◽  
pp. 9917-9928 ◽  
Author(s):  
M. P. Anisimov ◽  
J. A. Koropchak ◽  
A. G. Nasibulin ◽  
L. V. Timoshina

1981 ◽  
Vol 50 (10) ◽  
pp. 3187-3188 ◽  
Author(s):  
Masaru Komukae ◽  
Toshio Osaka ◽  
Yasuharu Makita ◽  
Tohru Ozaki ◽  
Kazuyuki Itoh ◽  
...  

2002 ◽  
Vol 12 (9) ◽  
pp. 133-138
Author(s):  
F. Nad ◽  
P. Monceau

In quasi-one-dimensional (TMTTF)2X conductors [1], where X are the various centro-symmetrical and non-centrosymmetrical anions, by study of temperature dependences of conductance G and dielectric permittivity $\varepsilon '$ at low frequencies we have found anomalies which are characteristic for phase transitions: an abrupt bend on the G(l/T) dependences with thermally activated decrease of G and sharp maxima of the E' near the charge ordering temperature corresponding to the E' divergence according to the Curie law. A number of evidences have been obtained in favor that driving force of these phase transitions is the long range correlated electron interaction yielding the charge ordering along the molecular chains (a lattice version of the Wigner crystal). The anion chains, electrically balanced with molecular chains, are of very importance in the formation and the stabilization of these new phase states. It appears that the form of charge symmetry of the anions determines to a great extent the types of the occurring transitions and the developing ground states.


2020 ◽  
Vol 35 (39) ◽  
pp. 2050326
Author(s):  
Abdul Jawad ◽  
Shahid Chaudhary

Among many open questions in theoretical physics, consistent quantum gravity theory is still a major issue to be solved. Recent major works in phase transitions of black holes (BH) can be helpful for quantum interpretation of classical gravity. We study the new effective method to discuss the thermodynamic phase transitions onto well renowned regular BHs. Ordinary approaches of phase transitions depend upon equation of state and it is impossible to obtain all critical points with ordinary approaches. This study is derived from the slope of temperature versus entropy and it provides the possibility of finding all the critical points analytically. This technique provides pressure, which is different from standard relation of pressure and independent of other thermodynamical relations. We discuss some issues in ordinary methods and provide an easy approach to investigate the critical behavior of thermodynamical quantities. We find out the phase transitions points and horizon radii of non-physical range for BHs. We also use the new thermodynamical relations to briefly study well-known Joule–Thomson (JT) effect on regular BH.


2013 ◽  
Vol 535-536 ◽  
pp. 89-93 ◽  
Author(s):  
Alexander V. Manzhirov

Phase transitions can be usually observed in nature and technology which effectively utilize certain types of these transitions. An approach to modeling phase transition processes on the basis of the mathematical theory of growing solids is developed. Liquid-solid and gas-solid phase transitions are under consideration. Main attention is paid to the processes of solid phase growth and deformation.


Sign in / Sign up

Export Citation Format

Share Document