Electrochemical Destruction of Zirconium-Based Claddings of Fuel Rods

2021 ◽  
Vol 63 (5) ◽  
pp. 595-600
Author(s):  
V. A. Davydov ◽  
Yu. A. Pokhitonov
Keyword(s):  
2011 ◽  
pp. 107-114
Author(s):  
B. Lacroix ◽  
T. Martella ◽  
M. Pras ◽  
M. Masson-Fauchier ◽  
L. Fayette

2016 ◽  
Vol 58 (9) ◽  
pp. 763-766 ◽  
Author(s):  
Mohammad Hosein Choopan Dastjerdi ◽  
Hossein Khalafi ◽  
Yaser Kasesaz ◽  
Amir Movafeghi

Kerntechnik ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. 413-418
Author(s):  
C. Aguado ◽  
F. Feria ◽  
L. E. Herranz
Keyword(s):  

Kerntechnik ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. 72-80 ◽  
Author(s):  
A. Marao ◽  
T. Kaliatka ◽  
A. Kaliatka ◽  
E. Ušpuras

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ming Fang ◽  
Yoann Altmann ◽  
Daniele Della Latta ◽  
Massimiliano Salvatori ◽  
Angela Di Fulvio

AbstractCompliance of member States to the Treaty on the Non-Proliferation of Nuclear Weapons is monitored through nuclear safeguards. The Passive Gamma Emission Tomography (PGET) system is a novel instrument developed within the framework of the International Atomic Energy Agency (IAEA) project JNT 1510, which included the European Commission, Finland, Hungary and Sweden. The PGET is used for the verification of spent nuclear fuel stored in water pools. Advanced image reconstruction techniques are crucial for obtaining high-quality cross-sectional images of the spent-fuel bundle to allow inspectors of the IAEA to monitor nuclear material and promptly identify its diversion. In this work, we have developed a software suite to accurately reconstruct the spent-fuel cross sectional image, automatically identify present fuel rods, and estimate their activity. Unique image reconstruction challenges are posed by the measurement of spent fuel, due to its high activity and the self-attenuation. While the former is mitigated by detector physical collimation, we implemented a linear forward model to model the detector responses to the fuel rods inside the PGET, to account for the latter. The image reconstruction is performed by solving a regularized linear inverse problem using the fast-iterative shrinkage-thresholding algorithm. We have also implemented the traditional filtered back projection (FBP) method based on the inverse Radon transform for comparison and applied both methods to reconstruct images of simulated mockup fuel assemblies. Higher image resolution and fewer reconstruction artifacts were obtained with the inverse-problem approach, with the mean-square-error reduced by 50%, and the structural-similarity improved by 200%. We then used a convolutional neural network (CNN) to automatically identify the bundle type and extract the pin locations from the images; the estimated activity levels finally being compared with the ground truth. The proposed computational methods accurately estimated the activity levels of the present pins, with an associated uncertainty of approximately 5%.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Marcin Kopeć ◽  
Martina Malá

The ultrasonic (UT) measurements have a long history of utilization in the industry, also in the nuclear field. As the UT transducers are developing with the technology in their accuracy and radiation resistance, they could serve as a reliable tool for measurements of small but sensitive changes for the nuclear fuel assembly (FA) internals as the fuel rods are. The fuel rod bow is a phenomenon that may bring advanced problems as neglected or overseen. The quantification of this issue state and its probable progress may help to prevent the safety-related problems of nuclear reactors to occur—the excessive rod bow could, in the worst scenario, result in cladding disruption and then the release of actinides or even fuel particles to the coolant medium. Research Centre Rez has developed a tool, which could serve as a complementary system for standard postirradiation inspection programs for nuclear fuel assemblies. The system works in a contactless mode and reveals a 0.1 mm precision of measurements in both parallel (toward the probe) and perpendicular (sideways against the probe) directions.


2000 ◽  
Vol 278 (2-3) ◽  
pp. 136-148 ◽  
Author(s):  
P.D.W Bottomley ◽  
A.D Stalios ◽  
J.-P Glatz ◽  
B Sätmark ◽  
C.T Walker

Sign in / Sign up

Export Citation Format

Share Document