S-wave velocity model for several regions of the Kamchatka Peninsula from the cross correlations of ambient seismic noise

2017 ◽  
Vol 53 (3) ◽  
pp. 341-352 ◽  
Author(s):  
S. Ya. Droznina ◽  
N. M. Shapiro ◽  
D. V. Droznin ◽  
S. L. Senyukov ◽  
V. N. Chebrov ◽  
...  
2017 ◽  
Author(s):  
Soumen Koley ◽  
Henk Jan Bulten ◽  
Jo van den Brand ◽  
Maria Bader ◽  
Xander Campman ◽  
...  

Author(s):  
J Salomón ◽  
C Pastén ◽  
S Ruiz ◽  
F Leyton ◽  
M Sáez ◽  
...  

Summary The seismic response of the Santiago City, the capital of Chile with more than 5.5 million inhabitants, is controlled by the properties of the shallower quaternary deposits and the impedance contrast with the underlying Abanico formation, among other factors. In this study, we process continuous records of ambient seismic noise to perform an ambient seismic noise tomography with the aim of defining the shallower structure of the Abanico formation underneath the densely populated metropolitan area of Santiago, Chile. The seismic signals were recorded by a network consisting of 29 broadband seismological stations and 12 accelerograph stations, located in a 35 × 35 km2 quadrant. We used the average coherency of the vertical components to calculate dispersion curves from 0.1 to 5 Hz and Bootstrap resampling to estimate the variance of the travel times. The reliable frequency band of the dispersion curves was defined by an empirical method based on sign normalization of the coherency real part. The ambient noise tomography was solved on a domain discretized into 256 2 × 2 km2 cells. Using a regularized weighted least squares inversion, we inverted the observed travel-times between stations, assuming straight ray paths, in order to obtain 2D phase velocity maps from 0.2 Hz to 1.1 Hz, linearly spaced every 0.05 Hz, in 157 of the 256 square cells of the domain. In each square cell with information, dispersion curves were assembled and used to invert shear wave velocity profiles, which were interpolated using the ordinary Kriging method to obtain a 3D shear wave velocity model valid from 0.6 to 5 km depth. The 3D velocity model shows that the Abanico formation is stiffer in the south of the study area with larger velocity anomalies towards the shallower part of the model. The value of the shear wave velocity narrows with depth, reaching an average value of 3.5 km/s from 3 to 5 km depth.


2013 ◽  
Vol 75 ◽  
pp. 26-35 ◽  
Author(s):  
José Badal ◽  
Yun Chen ◽  
Mimoun Chourak ◽  
Jacek Stankiewicz

Author(s):  
T Yudistira ◽  
J-P Metaxian ◽  
M Putriastuti ◽  
S Widiyantoro ◽  
N Rawlinson ◽  
...  

Summary Mt. Merapi, which lies just north of the city of Yogyakarta in Java, Indonesia, is one of the most active and dangerous volcanoes in the world. Thanks to its subduction zone setting, Mt Merapi is a stratovolcano, and rises to an elevation of 2968 m above sea level. It stands at the intersection of two volcanic lineaments, Ungaran–Telomoyo–Merbabu–Merapi (UTMM) and Lawu–Merapi–Sumbing–Sindoro–Slamet, which are oriented north-south and west-east, respectively. Although it has been the subject of many geophysical studies, Mt Merapi's underlying magmatic plumbing system is still not well understood. Here, we present the results of an ambient seismic noise tomography study, which comprise of a series of Rayleigh wave group velocity maps and a 3-D shear wave velocity model of the Merapi-Merbabu complex. A total of 10 months of continuous data (October 2013–July 2014) recorded by a network of 46 broadband seismometers were used. We computed and stacked daily cross-correlations from every pair of simultaneously recording stations to obtain the corresponding inter-station empirical Green's functions. Surface wave dispersion information was extracted from the cross-correlations using the multiple filtering technique, which provided us with an estimate of Rayleigh wave group velocity as a function of period. The group velocity maps for periods 3–12 s were then inverted to obtain shear wave velocity structure using the neighbourhood algorithm. From these results, we observe a dominant high velocity anomaly underlying Mt. Merapi and Mt. Merbabu with a strike of 152° N, which we suggest is evidence of old lava dating from the UTMM double-chain volcanic arc which formed Merbabu and Old Merapi. We also identify a low velocity anomaly on the southwest flank of Merapi which we interpret to be an active magmatic intrusion.


2019 ◽  
Vol 251 ◽  
pp. 115-127 ◽  
Author(s):  
Rafał Czarny ◽  
Zenon Pilecki ◽  
Nori Nakata ◽  
Elżbieta Pilecka ◽  
Krzysztof Krawiec ◽  
...  

2014 ◽  
Vol 81 ◽  
pp. 38-52 ◽  
Author(s):  
Yu-Chih Huang ◽  
Huajian Yao ◽  
Francis T. Wu ◽  
Wen-Tzong Liang ◽  
Bor-Shouh Huang ◽  
...  

2017 ◽  
Vol 122 (8) ◽  
pp. 6703-6720 ◽  
Author(s):  
Xingchen Wang ◽  
Yonghua Li ◽  
Zhifeng Ding ◽  
Lupei Zhu ◽  
Chunyong Wang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qing Dong ◽  
Zheng-hua Zhou ◽  
Su Jie ◽  
Bing Hao ◽  
Yuan-dong Li

At engineering practice, the theoretical basis for the cross-over method, used to obtain shear wave arrival time in the downhole method of the wave velocity test by surface forward and backward strike, is that the polarity of P-wave keeps the same, while the polarity of S-wave transforms when the direction of strike inverted. However, the characteristics of signals recorded in tests are often found to conflict with this theoretical basis for the cross-over method, namely, the polarity of the P-wave also transforms under the action of surface forward and backward strike. Therefore, 3D finite element numerical simulations were conducted to study the validity of the theoretical basis for the cross-over method. The results show that both shear and compression waves are observed to be in 180° phase difference between horizontal signal traces, consistent with the direction of excitation generated by reversed impulse. Furthermore, numerical simulation results prove to be reliable by the analytic solution; it shows that the theoretical basis for the cross-over method applied to the downhole wave velocity test is improper. In meanwhile, numerical simulations reveal the factors (inclining excitation, geophone deflection, inclination, and background noise) that may cause the polarity of the P-wave not to reverse under surface forward and backward strike. Then, as to reduce the influence factors, we propose a method for the downhole wave velocity test under surface strike, the time difference of arrival is based between source peak and response peak, and numerical simulation results show that the S-wave velocity by this method is close to the theoretical S-wave velocity of soil.


Sign in / Sign up

Export Citation Format

Share Document