Physicochemical Modeling of Hydrothermal Mineralization Processes at Ni–Co–As (±U–Ag), Co–S–As (±Au–W), and Cu–Co–As (±Sb–Ag) Deposits

2019 ◽  
Vol 61 (3) ◽  
pp. 225-255
Author(s):  
V. I. Lebedev ◽  
A. A. Borovikov ◽  
L. V. Gushchina ◽  
S. I. Shabalin
2021 ◽  
Author(s):  
He-Dong Zhao ◽  
Kui-Dong Zhao ◽  
Martin R. Palmer ◽  
Shao-Yong Jiang ◽  
Wei Chen

Abstract Owing to the superimposition of water-rock interaction and external fluids, magmatic source signatures of ore-forming fluids for vein-type tin deposits are commonly overprinted. Hence, there is uncertainty regarding the involvement of magmatic fluids in mineralization processes within these deposits. Tourmaline is a common gangue mineral in Sn deposits and can crystallize from both the magmas and the hydrothermal fluids. We have therefore undertaken an in situ major, trace element, and B isotope study of tourmaline from the Yidong Sn deposit in South China to study the transition from late magmatic to hydrothermal mineralization. Six tourmaline types were identified: (1) early tourmaline (Tur-OE) and (2) late tourmaline (Tur-OL) in tourmaline-quartz orbicules from the Pingying granite, (3) early tourmaline (Tur-DE) and (4) late tourmaline (Tur-DL) in tourmaline-quartz dikelets in the granite, and (5 and 6) core (Tur-OC) and rim (Tur-OR), respectively of hydrothermal tourmaline from the Sn ores. Most of the tourmaline types belong to the alkali group and the schorl-dravite solid-solution series, but the different generations of magmatic and hydrothermal tourmaline are geochemically distinct. Key differences include the hundredfold enrichment of Sn in hydrothermal tourmaline compared to magmatic tourmaline, which indicates that hydrothermal fluids exsolving from the magma were highly enriched in Sn. Tourmaline from the Sn ores is enriched in Fe3+ compared to the hydrothermal tourmaline from the granite and displays trends of decreasing Al and increasing Fe content from core to rim, relating to the exchange vector Fe3+Al–1. This reflects oxidation of fluids during the interaction between hydrothermal fluids and the mafic-ultramafic wall rocks, which led to precipitation of cassiterite. The hydrothermal tourmaline has slightly higher δ11B values than the magmatic tourmaline (which reflects the metasedimentary source for the granite), but overall, the tourmaline from the ores has δ11B values similar to those from the granite, implying a magmatic origin for the ore-forming fluids. We identify five stages in the magmatic-hydrothermal evolution of the system that led to formation of the Sn ores in the Yidong deposit based on chemical and boron isotope changes of tourmaline: (1) emplacement of a B-rich, S-type granitic magma, (2) separation of an immiscible B-rich melt, (3) exsolution of an Sn-rich, reduced hydrothermal fluid, (4) migration of fluid into the country rocks, and (5) acid-consuming reactions with the surrounding mafic-ultramafic rocks and oxidation of the fluid, leading to cassiterite precipitation.


2018 ◽  
Author(s):  
Emmanuel Escorcia-Ocampo ◽  
◽  
Felipe Gil-Bernal ◽  
Fernando Núñez Useche ◽  
Carles Canet ◽  
...  

2012 ◽  
Vol 260-261 ◽  
pp. 107-111
Author(s):  
Alyona Mikhailovna Kostina ◽  
Valentina Pavlovna Zvereva ◽  
Konstantin Frolov ◽  
Anton Pyatakov ◽  
Anastasia Igorevna Lysenko

The article presents the results of physicochemical modeling of hypergene processes in the tailing dump of the Solnechnaya Reclamation Plant (SRP). The effect of temperature factor on the hypergene minerals crystallization and pore solutions formation was researched.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 379 ◽  
Author(s):  
Leonidas Vonopartis ◽  
Paul Nex ◽  
Judith Kinnaird ◽  
Laurence Robb

The stanniferous granites of the Zaaiplaats Tin Field are part of the A-Type Lebowa Granite Suite, within the greater Bushveld Igneous Complex of northeast South Africa. The tin field comprises three granites: (1) the Nebo, a leucocratic, equigranular biotite granite; (2) The brick-red hypidiomorphic Bobbejaankop granite, which is extensively microclinized with chloritized biotite and characteristic synneusis-textured quartz; and (3) The variably altered roof facies of the Bobbejaankop granite known as the Lease microgranite. The Bobbejaankop and Lease granites were both extensively mined for cassiterite until 1989. The cassiterite is hosted in disseminations, miarolitic cavities, and within large hydrothermal, tourmalinized, and greisenized pipes and lenticular ore-bodies. An extensive petrological and whole-rock XRF and ICP-MS geochemical study, has provided new insight into the magmatic and magmatic-hydrothermal mineralization processes in these granites. Trace elements and Rayleigh Fractionation modelling suggest the sequential fractionation of the Nebo granite magma to be the origin of the Bobbejaankop granite. Incompatible elemental ratios, such as Zr/Hf and Nb/Ta, record the influence of internally derived, F-rich, hydrothermal fluid accumulation within the roof of the Bobbejaankop granite. Thus, the Lease granite resulted from alteration of the partially crystallized Bobbejaankop granite, subsequent to fluid saturation, and the accumulation of a magmatic-hydrothermal, volatile-rich fluid in the granite cupola. The ratio of Nb/Ta, proved effective in distinguishing the magmatic and magmatic-hydrothermal transition within the Bobbejaankop granite. Elemental ratios reveal the differences between pre- and post-fluid saturation in the mineralizing regimes within the same pluton. Thus highlighting the effect that the location and degree of hydrothermal alteration have had on the distribution of endogranitic tin mineralization.


PROMINE ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
Retno Anjarwati ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji

The regional tectonic conditions of the KSK Contract of Work are located in the mid-Tertiary magmatic arc (Carlile and Mitchell, 1994) which host a number of epithermal gold deposits (eg, Kelian, Indon, Muro) and significant prospects such as Muyup, Masupa Ria, Gunung Mas and Mirah. Copper-gold mineralization in the KSK Contract of Work is associated with a number of intrusions that have occupied the shallow-scale crust at the Mesozoic metamorphic intercellular junction to the south and continuously into the Lower Tertiary sediment toward the water. This intrusion is interpreted to be part of the Oligocene arc of Central Kalimantan (in Carlile and Mitchell 1994) Volcanic rocks and associated volcanoes are older than intrusions, possibly aged Cretaceous and exposed together with all three contacts (Carlile and Mitchell, 1994) some researchers contribute details about the geological and mineralogical background, and some papers for that are published for the Beruang Kanan region and beyond but no one can confirm the genesis type of the Beruang Kanan region The mineralization of the Beruang Kanan area is generally composed by high yields of epithermal sulphide mineralization. with Cu-Au mineralization This high epithermal sulphide deposition coats the upper part of the Cu-Au porphyry precipitate associated with mineralization processes that are generally controlled by the structure


Author(s):  
V. А. Shevchenko ◽  
A. V. Nefedov ◽  
A. V. Ilinskiy ◽  
А. Е. Morozov

Long-term observations of the drained soil of peat-podzolic-gley light loam on ancient alluvial sands state on the example of the meliorative object "Tinky-2" showed that under the influence of agricultural use in the soil, the organic matter mineralization processes are accelerated. During the drainage process, the soil evolutionarily suffered the following changes: the peat layer was compacted, humified and mineralized, which was a reason of the transformation them into the humus horizon. Based on the monitoring studies results it was established that during 21 intensive use years the peat layer thickness was decreased by 74.5% and amounted to 5.51 inch, which in the following 20 years was decreased to a layer of 1.18 inch, and for another 14 years it became a homogeneous humus horizon containing difficulty identifiable plant remains. For half a century, the bulk density increased by 6 times and the total moisture capacity of the soil decreased by 3.6 times. Other indicators were changed significantly. So, the ash content by 2016 increased from 11.2% to 52.7%. It was a reason of the plough-layer decreasing and it mixes with the mineral sand horizon during plowing. It should also be noted that the total nitrogen content in the soil decreased by 1.13%, and total carbon by 15.3% from 1982 to 2016. The dynamics of changes in the soil acidity, phosphorus and potassium content is associated with the introduction of calcareous, organic and mineral fertilizers in the 1980s. The unsystematic exploitation of such soils leads to decrease in the agricultural products productivity and increase in energy costs. When planning these soils usage in agricultural production, it is necessary to develop and implement modern melioration technologies and techniques aimed to increase soil fertility.


Author(s):  
Heinz A. Lowenstam ◽  
Stephen Weiner

Focusing on the basic principles of mineral formation by organisms, this comprehensive volume explores questions that relate to a wide variety of fields, from biology and biochemistry, to paleontology, geology, and medical research. Preserved fossils are used to date geological deposits and archaeological artifacts. Materials scientists investigate mineralized tissues to determine the design principles used by organisms to form strong materials. Many medical problems are also associated with normal and pathological mineralization. Lowenstam, the pioneer researcher in biomineralization, and Weiner discuss the basic principles of mineral formation by organisms and compare various mineralization processes. Reference tables listing all known cases in which organisms form minerals are included.


Sign in / Sign up

Export Citation Format

Share Document