Alkaline activity of glass powder used as additives to Portland cement. Part II

2016 ◽  
Vol 42 (3) ◽  
pp. 263-265 ◽  
Author(s):  
V. V. Shevchenko ◽  
G. N. Kotsai
Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1346
Author(s):  
Wiktor Szewczenko ◽  
Galyna Kotsay

The concept of the alkaline activity of powdered materials introduced into cement compositions has been proposed, along with methods for its determination. The possibility of using waste glass as an active additive to Portland cement was evaluated from the standpoint of alkaline activity. Replacing the Portland cement component with glass waste in the form of glass powder at amounts from 1 to 35% made it possible to maintain the cement composition’s alkaline activity at a level that met the standard requirements. The previously unknown effects of mixed alkali in Portland cement in the presence of glass waste are described. Portland cement has a high potassium alkaline activity; however, container glass has a high sodium alkaline activity and a fairly low potassium alkaline activity. When glass waste is introduced into the structure of cement compositions, potassium alkaline activity is reduced.


2021 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Marwa Saadi Mhmood

AbstractA quaternary supplementary cementitious materials as partial replacement of ordinary Portland cement decreases CO2 emission. This paper has investigated the properties of mortars made from different quaternary blends of wood ash, steel slag powder and glass powder with ordinary Portland cement at different replacement levels of 0, 24, 25, and 30% by weight of the binder. The blended mortar mixtures tested for flow, compressive strength and density. The results showed that the flow of mortars is decreased with the combined use of steel slag powder, glass powder, and wood ash compared with control mix. Compressive strength reduced with the combination of steel slag powder, glass powder and wood ash but this reduction effects is acceptable especially at 24% replacement contain super-plasticizer compared with the ecological benefit.


2017 ◽  
Author(s):  
Jaroslav Pokorný ◽  
Milena Pavlíková ◽  
Vratislav Tydlitát ◽  
Lenka Scheinherrová ◽  
Pavla Rovnaníková ◽  
...  

2017 ◽  
Vol 67 (328) ◽  
pp. 136 ◽  
Author(s):  
H. Rashidian-Dezfouli ◽  
P. R. Rangaraju

Strength and durability characteristics of geopolymers produced using three precursors, consisting of fly ash, Ground Glass Fiber (GGF), and glass-powder were studied. Combinations of sodium hydroxide and sodium silicate were used as the activator solutions, and the effect of different sodium and silica content of the activators on the workability and compressive strength of geopolymers was investigated. The parameters used in this study were the mass ratio of Na2O-to-binder (for sodium content), and SiO2-to-Na2O of the activator (for silica content). Geopolymer mixtures that achieved the highest compressive strength from each precursor were assessed for their resistance to alkali-silica reaction and compared against the performance of portland cement mixtures. Test results revealed that GGF and fly ash-based geopolymers performed better than glass-powder-based geopolymer mixtures. The resistance of GGF-based and fly ash-based geopolymers to alkali-silica reaction was superior to that of portland cement mixtures, while glass-powder-based geopolymer showed inferior performance.


Sign in / Sign up

Export Citation Format

Share Document