The Morphofunctional Response of T-lymphocytes to in vitro Contact with a Calcium Phosphate Coating in the Presence of a T-cell Activator

2021 ◽  
Vol 15 (1) ◽  
pp. 51-60
Author(s):  
L. S. Litvinova ◽  
E. S. Melashchenko ◽  
O. G. Khaziakhmatova ◽  
K. A. Yurova ◽  
Yu. P. Sharkeev ◽  
...  
2009 ◽  
Vol 631-632 ◽  
pp. 211-216 ◽  
Author(s):  
Kyosuke Ueda ◽  
Takayuki Narushima ◽  
Takashi Goto ◽  
T. Katsube ◽  
Hironobu Nakagawa ◽  
...  

Calcium phosphate coating films were fabricated on Ti-6Al-4V plates and screw-type implants with a blast-treated surface using radiofrequency (RF) magnetron sputtering and were evaluated in vitro and in vivo. Amorphous calcium phosphate (ACP) and oxyapatite (OAp) films obtained in this study could cover the blast-treated substrate very efficiently, maintaining the surface roughness. For the in vitro evaluations of the calcium phosphate coating films, bonding strength and alkaline phosphatase (ALP) activity were examined. The bonding strength of the coating films to a blast-treated substrate exceeded 60 MPa, independent of film phases except for the film after post-heat-treatment in silica ampoule. When compared with an uncoated substrate, the increase in the ALP activity of osteoblastic SaOS-2 cells on a calcium phosphate coated substrate was confirmed by a cell culture test. The removal torque of screw-type Ti-6Al-4V implants with a blast-treated surface from the femur of Japanese white rabbit increased with the duration of implantation and it was statistically improved by coating an ACP film 2 weeks after implantation. The in vitro and in vivo studies suggested that the application of the sputtered ACP film as a coating on titanium implants was effective in improving their biocompatibility with bones.


2010 ◽  
Vol 654-656 ◽  
pp. 2162-2167
Author(s):  
Takayuki Narushima ◽  
Kyosuke Ueda ◽  
Takashi Goto ◽  
Jun Kurihara ◽  
Hiroshi Kawamura

Oxyapatite, amorphous calcium phosphate, and double-layered calcium phosphate coating films were fabricated on mirror-polished commercially pure titanium (CP Ti) and blasted Ti-6Al-4V alloy substrates by radiofrequency (RF) magnetron sputtering; the properties of these films were evaluated in vivo and in vitro. The bonding strength between the calcium phosphate films and the Ti substrates was higher than 50 MPa. This value is higher than the bonding strength reported in the case of plasma-sprayed calcium phosphate coating films fabricated on Ti substrates. The removal torque of screw-type blasted Ti-6Al-4V alloy implants in the femurs of Japanese white rabbits increased with the duration of implantation, and the removal torque values of the coated implants was observed to be higher than those of the non-coated implants. In vitro and in vivo studies indicate that coating Ti implants with calcium phosphate films using RF magnetron sputtering is effective in improving the bone compatibility of Ti implants. Finally, the factors that should be considered in fabricating biomedical coating films were discussed.


2019 ◽  
Vol 17 (1) ◽  
pp. 228080001982651 ◽  
Author(s):  
Thuy-Duong Thi Nguyen ◽  
Yong-Seok Jang ◽  
Min-Ho Lee ◽  
Tae-Sung Bae

Background: Titanium biomedical devices coated with strontium-doped calcium phosphate ceramics can support desirable bone regeneration through anabolic and anti-catabolic effects of strontium and the compositions close to that of natural mineral tissue. Methods: Strontium was doped into the calcium phosphate coating using the cyclic pre-calcification method on the anodized titanium plate. The effects of the different concentration of strontium in treatment solution and cycle numbers of the pre-calcification treatment on the biocompatibility were investigated in terms of the changes in morphology and chemical composition of coating, ion release pattern and cytocompatibility in vitro. Results: At a high substitution ratio of strontium in the calcium phosphate coating, the size of precipitated particles was decreased and the solubility of the coating was increased. ASH55 group, which was coated by pre-calcification treatment of 20 cycles in coating solution with Sr:Ca molar ratio of 5:5, exhibited superior cellular attachment at 1 day and proliferation after 7 days of culturing in comparison with the non-doped surface and other doped surfaces. Conclusion: Sufficient strontium doping concentrations in calcium phosphate coating can enhance cell adhesion and proliferation on the titanium biomedical devices for bone regeneration.


2013 ◽  
Vol 334-335 ◽  
pp. 297-302 ◽  
Author(s):  
A.L.A. Escada ◽  
João Paulo Barros Machado ◽  
Roberto Zenhei Nakazato ◽  
Ana Paula Rosifini Alves Claro

Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent in-vitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nanodimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaohua Yu ◽  
Mei Wei

The influence of biomimetic calcium phosphate coating on osteoblasts behaviorin vitrois not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8) on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT) and biomimetic calcium phosphate coated ATT (CaP). The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surfacein vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation.


Author(s):  
Takayuki Narushima ◽  
Kyosuke Ueda

In this chapter, the authors discuss the fabrication and properties of calcium phosphate coatings on titanium (Ti) by radio-frequency (RF) magnetron sputtering. First, they address the necessity of surface modification of metallic biomaterials and the effectiveness of calcium phosphate coating. Next, they briefly review the processes used in the application of calcium phosphate coatings and present the effect of sputtering parameters on the phase and deposition rates of these coatings. Finally, the chapter discusses the performance of amorphous and crystalline (oxyapatite) calcium phosphate coatings on Ti based on in vitro and in vivo evaluations.


2019 ◽  
Vol 6 (9) ◽  
pp. 095407 ◽  
Author(s):  
Seyed Omid Reza Sheykholeslami ◽  
Leila Fathyunes ◽  
Mohamadreza Etminanfar ◽  
Jafar Khalil-Allafi

Sign in / Sign up

Export Citation Format

Share Document