Preparation and properties of green rust type substances

1987 ◽  
Vol 52 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Jaroslav Vinš ◽  
Jan Šubrt ◽  
Vladimír Zapletal ◽  
František Hanousek

A method has been worked out for the reproducible preparation of Green Rust substances involving SO42-, Cl-, Br-, and I- anions. The chemical composition of the substances prepared has been followed in dependence on the synthesis conditions. The powder X-ray and electron diffraction patterns and infrared and Moessbauer spectra have been measured and discussed.

Author(s):  
D J H Cockayne ◽  
D R McKenzie

The study of amorphous and polycrystalline materials by obtaining radial density functions G(r) from X-ray or neutron diffraction patterns is a well-developed technique. We have developed a method for carrying out the same technique using electron diffraction in a standard TEM. It has the advantage that studies can be made of thin films, and on regions of specimen too small for X-ray and neutron studies. As well, it can be used to obtain nearest neighbour distances and coordination numbers from the same region of specimen from which HREM, EDS and EELS data is obtained.The reduction of the scattered intensity I(s) (s = 2sinθ/λ ) to the radial density function, G(r), assumes single and elastic scattering. For good resolution in r, data must be collected to high s. Previous work in this field includes pioneering experiments by Grigson and by Graczyk and Moss. In our work, the electron diffraction pattern from an amorphous or polycrystalline thin film is scanned across the entrance aperture to a PEELS fitted to a conventional TEM, using a ramp applied to the post specimen scan coils. The elastically scattered intensity I(s) is obtained by selecting the elastically scattered electrons with the PEELS, and collecting directly into the MCA. Figure 1 shows examples of I(s) collected from two thin ZrN films, one polycrystalline and one amorphous, prepared by evaporation while under nitrogen ion bombardment.


Author(s):  
Karimat El-Sayed

Lead telluride is an important semiconductor of many applications. Many Investigators showed that there are anamolous descripancies in most of the electrophysical properties of PbTe polycrystalline thin films on annealing. X-Ray and electron diffraction studies are being undertaken in the present work in order to explain the cause of this anamolous behaviour.Figures 1-3 show the electron diffraction of the unheated, heated in air at 100°C and heated in air at 250°C respectively of a 300°A polycrystalline PbTe thin film. It can be seen that Fig. 1 is a typical [100] projection of a face centered cubic with unmixed (hkl) indices. Fig. 2 shows the appearance of faint superlattice reflections having mixed (hkl) indices. Fig. 3 shows the disappearance of thf superlattice reflections and the appearance of polycrystalline PbO phase superimposed on the [l00] PbTe diffraction patterns. The mechanism of this three stage process can be explained on structural basis as follows :


Author(s):  
B. B. Chang ◽  
D. F. Parsons

The significance of dynamical scattering effects remains the major question in the structural analysis by electron diffraction of protein crystals preserved in the hydrated state. In the few cases (single layers of purple membrane and 400-600 Å thick catalase crystals examined at 100 kV acceleration voltage) where electron-diffraction patterns were used quantitatively, dynamical scattering effects were considered unimportant on the basis of a comparison with x-ray intensities. The kinematical treatment is usually justified by the thinness of the crystal. A theoretical investigation by Ho et al. using Cowley-Moodie multislice formulation of dynamical scattering theory and cytochrome b5as the test object2 suggests that kinematical analysis of electron diffraction data with 100-keV electrons would not likely be valid for specimen thickness of 300 Å or more. We have chosen to work with electron diffraction patterns obtained from actual wet protein crystals (rat hemoglobin crystals of thickness range 1000 to 2500 Å) at 200 and 1000 kV and to analyze these for dynamical effects.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2019 ◽  
Author(s):  
Jorge Osio-Norgaard ◽  
Wil V. Srubar

This work presents experimental evidence that confirms the potential for two specific zeolites, namely chabazite and faujasite (with a cage size ~2–13 Å), to adsorb small amounts of chloride from a synthetic alkali-activated cement (AAC) pore solution. Four synthetic zeolites were first exposed to a chlorinated AAC pore solution, two faujasite zeolites (i.e., FAU, X-13), chabazite (i.e., SSZ-13), and sodium-stabilized mordenite (i.e., Na-Mordenite). The mineralogy and chemical composition were subsequently investigated via X-ray diffraction (XRD) and both energy- and wavelength-dispersive X-ray spectroscopy (WDS), respectively. Upon exposure to a chlorinated AAC pore solution, FAU and SSZ-13 displayed changes to their diffraction patterns (i.e., peak shifting and broadening), characteristic of ion entrapment within zeolitic aluminosilicate frameworks. Elemental mapping with WDS confirmed the presence of small amounts of elemental chlorine. Results indicate that the chloride-bearing capacity of zeolites is likely dependent on both microstructural features (e.g., cage sizes) and chemical composition.


2001 ◽  
Vol 16 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Takeo Oku ◽  
Jan-Olov Bovin ◽  
Iwami Higashi ◽  
Takaho Tanaka ◽  
Yoshio Ishizawa

Atomic positions for Y atoms were determined by using high-resolution electron microscopy and electron diffraction. A slow-scan charge-coupled device camera which had high linearity and electron sensitivity was used to record high-resolution images and electron diffraction patterns digitally. Crystallographic image processing was applied for image analysis, which provided more accurate, averaged Y atom positions. In addition, atomic disordering positions in YB56 were detected from the differential images between observed and simulated images based on x-ray data, which were B24 clusters around the Y-holes. The present work indicates that the structure analysis combined with digital high-resolution electron microscopy, electron diffraction, and differential images is useful for the evaluation of atomic positions and disordering in the boron-based crystals.


1992 ◽  
Vol 242 ◽  
Author(s):  
Andrew Freedman ◽  
Gary N. Robinson ◽  
Charter D. Stinespring

ABSTRACTDiamond (111) surfaces with the dehydrogenerated 2×1 reconstruction have been exposed to a beam of atomic fluorine at 300 K. The uptake of fluorine, as measured using X-ray photoelectron spectroscopy, is quite efficient and saturates at a coverage of less than a monolayer. Low energy electron diffraction patterns indicate that fluorine termination of the diamond surface produces a lxi bulk-like reconstruction in contrast to the disordered surface produced on the (100) surface.


Clay Minerals ◽  
1977 ◽  
Vol 12 (1) ◽  
pp. 59-66 ◽  
Author(s):  
M. J. Wilson ◽  
J. M. Tait

AbstractX-ray diffraction and electron microscopy show that halloysite occurs widely in soils derived from a variety of parent rocks (granite, gabbro, schist and slate) in north-east Scotland. Both tubular and non-tubular forms are observed, the latter being characterized by electron diffraction patterns with 001 reflection either absent or very weak and diffuse. Clay fractions from a poorly drained profile separated without prior drying of the soil samples contain essentially dehydrated halloysite at the surface, this becoming progressively more hydrated with depth. Since halloysite occurs extensively in soils of widely varying drainage class the mineral is probably not the result of recent soilforming processes but may have originated during Tertiary or interglacial weathering.


2008 ◽  
Vol 8 (3) ◽  
pp. 1481-1488 ◽  
Author(s):  
Marguerite Germain ◽  
Philip Fraundorf ◽  
Sam Lin ◽  
Elena A. Guliants ◽  
Christopher E. Bunker ◽  
...  

We describe the synthesis and characterization of srilankite (Ti2ZrO6) nanowires. The nanowires are produced via hydrothermal synthesis with a TiO2/ZrO2 mixture under alkaline conditions. The zirconium titanate nanowires have median diameters of 60 nm and median lengths of 800 nm with the 〈022〉 axis along the length of the nanowire. Electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and electron diffraction are used to characterize the phases and compare nanowires produced with varying molar ratios of Ti and Zr. Electron diffraction patterns produced from single nanowires show highly crystalline nanowires displaying a compositional-ordering superlattice structure with Zr concentrated in bands within the crystal structure. This is in contrast to naturally occurring bulk srilankite where Zr and Ti are randomly substituted within the crystal lattice. Streaking is observed in the electron diffraction patterns suggesting short-range ordering within the superlattice structure.


Sign in / Sign up

Export Citation Format

Share Document