Interfacial interactions and the heterogeneous one-electron reduction of methyl viologen

1987 ◽  
Vol 52 (5) ◽  
pp. 1097-1114 ◽  
Author(s):  
Michael Heyrovský ◽  
Ladislav Novotný

The one-electron reversible electroreduction of methyl viologen to its radical cation in aqueous solutions on mercury electrodes proceeds, according to potential, concentration and time of electrolysis, in various ways. Methyl viologen is adsorbed in flat orientation at the electrode surface; it undergoes a surface redox process in π-interaction with the metal in a potential range positive by about 0.2 V of the beginning of the electroreduction. The actual reduction starts by electron transfer followed by adsorption of the radical cation and, at higher concentrations and in a narrow potential range, by crystallization at the electrode surface of a salt of the radical cation. In solution near the electrode the radical cation dimerizes and the dimer also adsorbs at the electrode. In the region of the standard redox potential and more negative the reduction proceeds by electron transfer from the electrode covered by a layer of the radical cation or of its dimer.

1982 ◽  
Vol 60 (22) ◽  
pp. 2856-2858 ◽  
Author(s):  
Jin-Gou Xu ◽  
Gerald B. Porter

Ru(bpy)32+ is photodecomposed in 0.3 M NaOH with [Formula: see text]. With methyl viologen also present, electron transfer quenching of the luminescence is accompanied by formation of the one electron reduction product of methyl viologen, MV+. The Ru(bpy)33+ formed in the corresponding oxidation is rapidly reduced by either OH− or MV+ to Ru(II).


1988 ◽  
Vol 27 (17) ◽  
pp. 2932-2934 ◽  
Author(s):  
Kevin R. Howes ◽  
C. Greg Pippin ◽  
James C. Sullivan ◽  
Dan Meisel ◽  
James H. Espenson ◽  
...  

2005 ◽  
Vol 392 (3) ◽  
pp. 583-587 ◽  
Author(s):  
Chantal Capeillere-Blandin ◽  
Delphine Mathieu ◽  
Daniel Mansuy

We previously showed that one-electron transfer from tetrahydropterins to iron porphyrins is a very general reaction, with formation of an intermediate cation radical similar to the one detected in NO synthase. As a model reaction, the rates of reduction of eight haemoproteins by diMePH4 (6,7-dimethyltetrahydropterin) have been studied and correlated with their one-electron reduction potentials, Em (FeIII/FeII). On the basis of kinetic data analyses, a bimolecular collisional mechanism is proposed for the electron transfer from diMePH4 to ferrihaemoproteins. Haemoproteins with reduction potentials below −160 mV were shown not to be reduced by diMePH4 to the corresponding ferrohaemoproteins. For haemoproteins with reduction potentials more positive than −160 mV, such as chloroperoxidase, cytochrome b5, methaemoglobin and cytochrome c, there was a good correlation between the second-order reduction rate constant and the redox potential, Em (FeIII/FeII):The rate of reduction of cytochrome c by BH4 [(6R)-5,6,7,8-tetrahydrobiopterin] was determined to be similar to that of the reduction of cytochrome c by diMePH4. These results confirm the role of tetrahydropterins as one-electron donors to FeIII porphyrins.


1997 ◽  
Vol 496 ◽  
Author(s):  
T. Fujieda ◽  
S. Koike ◽  
S. Higuchi

ABSTRACTElectrochemistry of a nickel electrode in propylene carbonate [PC] containing LiClO4, LiCF3SO3, LiPF6 was studied through a micro electrode (φ =25 μ m) techniques in the wide potential range between +4.5 and -0.2 V vs. Li/Li+. Common pronounced peaks were observed in the potential range positive to lithium electrodeposition on nickel in all electrolyte solutions examined. Thus, these peaks can be attributed to reactions related to Li+ or commonly contained contaminants such as water and acids. In particular, the peak which appeared at the most negative potential seemed to be underpotential deposition (UPD) of lithium.To prove this hypothesis a nickel electrode in highly dried PC (water content : 3 – 8 ppm) intentionally contaminated with a small amount of water and CF3COOH was examined via cyclic voltammetry. Changing the content of water and acid (and its ratio) in PC resulted in a variety of voltammograms and one of them was identical to the one observed in PC containing lithium electrolytes. These facts preclude the existence of UPD of lithium on nickel in the electrolyte solutions. Instead, the existence of NiOH on nickel and its redox reaction mechanism have been postulated. The mechanism is consistent with the experimental facts : a nickel electrode passivates in PC with a small amount of water, and a small amount of acid, CF3COOH, can prevent passivation. The vicinity of the electrode surface may be exposed to an alkaline atmosphere owing to the reduction product of water. This seems to be the cause of troubles we run into with the electrodes at cathodic potentials


1983 ◽  
Vol 48 (2) ◽  
pp. 364-378 ◽  
Author(s):  
Rolf Voigtländer ◽  
Jaromír Hlavatý ◽  
Jiří Volke ◽  
Viktor Bakos

The last two compounds in a 5-membered series of aromatic dinitro compounds are reduced in a completely different manner at mercury electrodes. 2,2'-Dinitrodiphenylmethane (I) - in which a conjugation of both symmetrical moieties is ruled out - is electrolytically reduced in an eight-electron step to a bishydroxylamine this being most stable between pH 4.5 and 5.0. In processing the catholyte increase in concentration of this product leads to its intermolecular disproportionation, resulting in the formation of dibenzo[b, e]-1,2-diazepine 5-oxide (IV) and 2,2'-diaminodiphenylmethane (III). 2,2'-Dinitrobenzophenone (II) reduces at more positive potentials. Its preparative electrolysis in acetonitrile (with 0.1M-N(n-C4H9)4PF6 as supporting electrolyte) the application of which was made necessary by the low solubility of II in ethanol, proceeding in an anomalous way. In the most positive cathodic wave a radical anion results, the following cathodic wave corresponds to a 6-electron reduction of the one nitro group to an amino group while the other nitro group splits off as the anion NO-2 (this later giving an anodic wave). Its formation has been proved by standard addition in polarography and by a qualitative analytical test. The product which results through this electrode process and a follow-up chemical reaction is acridone. This in turn, reduces in the third, most negative 4-electron wave to dihydroacridine. The comparison of all substances studied in this series reveals that their reducibility decreases with respect to the link X, viz. in the sequence CO > O > S and CH2 > NH. The electrolytical reduction on mercury cathodes occurs in a similar manner with analogues where X = O, S or CH2. Here, the main intermediate is the bis-hydroxylamine the stability of which predetermines the structure of final products. The other group comprises the substances with X = CO and NH. Here the main intermediate is the 2-nitro-2'-amino-diphenyl-X which is formed in a 6-electron process taking place at one of the nitro groups. The follow-up cyclization reaction leading to seven-membered heterocyclic rings located between two benzene nuclei only occurs with analogues of the type X = CH2, O and S. A partial reduction of dinitro compounds of this series has been observed with the analogue containing the NH link although that with X = CO has generally good preconditions for this mechanism.


Langmuir ◽  
2004 ◽  
Vol 20 (22) ◽  
pp. 9441-9444 ◽  
Author(s):  
Takashi Tachikawa ◽  
Sachiko Tojo ◽  
Mamoru Fujitsuka ◽  
Tetsuro Majima

1992 ◽  
Vol 57 (9) ◽  
pp. 1836-1842 ◽  
Author(s):  
Rafael Marín Galvín ◽  
José Miguel Rodríguez Mellado

The electroreduction of niazid on mercury electrodes has been studied in acidic media (pH < 6). Tafel slopes and reaction orders were obtained at potentials corresponding to the foot of the first polarographic wave. On the basis of both polarographic and voltammetric results it has been shown that the waves appearing at more negative potentials correspond to the reduction of nicotinamide. Protonation of niazid plays an essential role in its reduction and pK values of 1.4, 3.2 and 11.5 were obtained by UV spectroscopy. The process corresponding to the first wave is irreversible, being the second one-electron transfer the rate determining step. Above pH 4 the process is complex due to the overlapping of the waves caused by the occurrence of protonation reactions.


Sign in / Sign up

Export Citation Format

Share Document