Chemical components of the rhizomes of Drynaria fortunei (KUNZE) J. Sm. (polypodiaceae) in Vietnam

2011 ◽  
Vol 76 (9) ◽  
pp. 1133-1139 ◽  
Author(s):  
Pham Thi Nhat Trinh ◽  
Nguyen Cong Hao ◽  
Phan Thanh Thao ◽  
Le Tien Dung

From the ethanol extract of Drynaria fortunei (KUNZE) J. Sm., a new phenylpropanoid glycoside, fortunamide (1), was isolated and characterized by spectroscopic methods. Together with a new glycoside, 9 known compounds, including three curcuminoids (2–4), two isoprenylated flavonoids (5, 6), two flavonoids (7, 8), one monoterpenoid (9) and one phenolic acid (10) were isolated and identified by spectral data analysis from the rhizomes of Drynaria fortunei (KUNZE) J. Sm. Eight of them were isolated from Drynaria fortunei (KUNZE) J. Sm. for the first time.

Algorithms ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Michael Li ◽  
Santoso Wibowo ◽  
Wei Li ◽  
Lily D. Li

Extreme learning machine (ELM) is a popular randomization-based learning algorithm that provides a fast solution for many regression and classification problems. In this article, we present a method based on ELM for solving the spectral data analysis problem, which essentially is a class of inverse problems. It requires determining the structural parameters of a physical sample from the given spectroscopic curves. We proposed that the unknown target inverse function is approximated by an ELM through adding a linear neuron to correct the localized effect aroused by Gaussian basis functions. Unlike the conventional methods involving intensive numerical computations, under the new conceptual framework, the task of performing spectral data analysis becomes a learning task from data. As spectral data are typical high-dimensional data, the dimensionality reduction technique of principal component analysis (PCA) is applied to reduce the dimension of the dataset to ensure convergence. The proposed conceptual framework is illustrated using a set of simulated Rutherford backscattering spectra. The results have shown the proposed method can achieve prediction inaccuracies of less than 1%, which outperform the predictions from the multi-layer perceptron and numerical-based techniques. The presented method could be implemented as application software for real-time spectral data analysis by integrating it into a spectroscopic data collection system.


2012 ◽  
Vol 67 (11-12) ◽  
pp. 580-586 ◽  
Author(s):  
Mohammad Aslam ◽  
Mohammed Ali ◽  
Rameshwar Dayal ◽  
Kalim Javed

Phytochemical investigations of the methanolic extract of the fruits of Peucedanum grande C. B. Clarke (Apiaceae) led to the identification of three coumarins and a naphthyl labdanoate diarabinoside characterized as 5-hydroxy-6-isopranyl coumarin (1), 5,6-furanocoumarin (2), 7-methoxy-5,6-furanocoumarin (3), and labdanyl-3α-ol-18-(3’’’-methoxy-2’’’- naphthyl-oate)-3α-L-arabinofuranosyl-(2’→1’’)-α-L-arabinofuranoside (4). The structures of these compounds were identified on the basis of spectral data analysis and chemical reactions. The methanolic extract and 4 showed nephroprotective activity against gentamicininduced nephrotoxicity in Wistar rats.


2013 ◽  
Vol 8 (8) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Hsu-Ming Chung ◽  
Wei-Hsien Wang ◽  
Tsong-Long Hwang ◽  
Yang-Chang Wu ◽  
Ping-Jyun Sung

Three natural clovane-related sesquiterpenoids, 2β-acetoxyclovan-9α-ol (1), 9α-acetoxyclovan-2β-ol (2) and clovan-2β,9β-diol (3), were isolated from the gorgonian coral Rumphella antipathies. The structures of clovanes 1–3 were elucidated by spectroscopic methods and by comparison of the spectral data with those of known clovane analogues. This is the first time that clovanes 1–3 have been isolated from a natural source. Clovanes 1 and 2 displayed inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils.


2016 ◽  
Vol 11 (5) ◽  
pp. 1934578X1601100
Author(s):  
Wei Luo ◽  
Yaya Wen ◽  
Yanbei Tu ◽  
Hongjian Du ◽  
Qin Li ◽  
...  

Ten flavonoids (1–10), including a new glycoside (nevadensin-7-sambubioside, 7), together with a phenylpropanoid glycoside (11) were isolated from Lysionotus pauciflorus. Their structures were elucidated by a combination of spectroscopic methods and comparing with literature data. Five compounds (1, 3, 4, 8, and 9) were obtained from the family Gesneriaceae for the first time. The new compound was evaluated in vitro for anticholinesterase activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), but was found to be inactive.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 898
Author(s):  
Xin Wang ◽  
Xiang-Jian Zhong ◽  
Na Zhou ◽  
Ning Cai ◽  
Jia-Hui Xu ◽  
...  

Gymnadenia conopsea R. Br. is a traditional Tibetan medicinal plant that grows at altitudes above 3000 m, which is used to treat neurasthenia, asthma, coughs, and chronic hepatitis. However, a comprehensive configuration of the chemical profile of this plant has not been reported because of the complexity of its chemical constituents. In this study, a rapid and precise method based on ultra-high performance liquid chromatography (UPLC) combined with an Orbitrap mass spectrometer (UPLC–Orbitrap–MS/MS) was established in both positive- and negative-ion modes to rapidly identify various chemical components in the tubers of G. conopsea for the first time. Finally, a total of 91 compounds, including 17 succinic acid ester glycosides, 9 stilbenes, 6 phenanthrenes, 19 alkaloids, 11 terpenoids and steroids, 20 phenolic acid derivatives, and 9 others, were identified in the tubers of G. conopsea based on the accurate mass within 3 ppm error. Furthermore, many alkaloids, phenolic acid derivates, and terpenes were reported from G. conopsea for the first time. This rapid method provides an important scientific basis for further study on the cultivation, clinical application, and functional food of G. conopsea.


2015 ◽  
Author(s):  
Kellen J. Sorauf ◽  
Amy J. R. Bauer ◽  
Andrzej W. Miziolek ◽  
Frank C. De Lucia

2020 ◽  
Vol 12 (4) ◽  
pp. 665-672
Author(s):  
M. Chakraborty

The plant Murraya koenigii, commonly known as curry leaf tree is a rich source of carbazole alkaloids. A number of monomeric as well as dimeric carbazoles with C13, C18 and C23 skeleton have been isolated from the plant. In my present work, a new carbazole alkaloid, designated as mumunine, was isolated from the bark of Murraya koenigii (Linn) Spreng, along with a known carbazole alkaloid, viz. mahanimbine. The structure of the new alkaloid 1 was elucidated on the basis of 1D and 2D NMR spectral data analysis. In this paper, the isolation and structure elucidation of the new compound will be discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document