scholarly journals Rapid Characterizaiton of Chemical Constituents of the Tubers of Gymnadenia conopsea by UPLC–Orbitrap–MS/MS Analysis

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 898
Author(s):  
Xin Wang ◽  
Xiang-Jian Zhong ◽  
Na Zhou ◽  
Ning Cai ◽  
Jia-Hui Xu ◽  
...  

Gymnadenia conopsea R. Br. is a traditional Tibetan medicinal plant that grows at altitudes above 3000 m, which is used to treat neurasthenia, asthma, coughs, and chronic hepatitis. However, a comprehensive configuration of the chemical profile of this plant has not been reported because of the complexity of its chemical constituents. In this study, a rapid and precise method based on ultra-high performance liquid chromatography (UPLC) combined with an Orbitrap mass spectrometer (UPLC–Orbitrap–MS/MS) was established in both positive- and negative-ion modes to rapidly identify various chemical components in the tubers of G. conopsea for the first time. Finally, a total of 91 compounds, including 17 succinic acid ester glycosides, 9 stilbenes, 6 phenanthrenes, 19 alkaloids, 11 terpenoids and steroids, 20 phenolic acid derivatives, and 9 others, were identified in the tubers of G. conopsea based on the accurate mass within 3 ppm error. Furthermore, many alkaloids, phenolic acid derivates, and terpenes were reported from G. conopsea for the first time. This rapid method provides an important scientific basis for further study on the cultivation, clinical application, and functional food of G. conopsea.

Planta Medica ◽  
2021 ◽  
Author(s):  
Huan Du ◽  
Tong Xu ◽  
Huan Yi ◽  
Xinmei Xu ◽  
Chengcheng Zhao ◽  
...  

AbstractThe dried stem bark of Berberis kansuensis is a commonly used Tibetan herbal medicine for the treatment of diabetes. Its main chemical components are alkaloids, such as berberine, magnoflorine and jatrorrhizine. However, the role of gut microbiota in the in vivo metabolism of these chemical components has not been fully elucidated. In this study, an ultra-high performance liquid chromatography method coupled with Orbitrap mass spectrometry (UHPLC-Orbitrap-MS) technology was applied to detect and identify prototype components and metabolites in rat intestinal contents and serum samples after oral administration of a B. kansuensis extract. A total of 16 prototype components and 40 metabolites were identified. The primary metabolic pathways of the chemical components from B. kansuensis extract were demethylation, desaturation, deglycosylation, reduction, hydroxylation, and other conjugation reactions including sulfation, glucuronidation, glycosidation, and methylation. By comparing the differences of metabolites between diabetic and pseudo-germ-free diabetic rats, we found that the metabolic transformation of some chemical components in B. kansuensis extract such as bufotenin, ferulic acid 4-O-β-D-glucopyranoside, magnoflorine, and 8-oxyberberine, was affected by the gut microbiota. The results revealed that the gut microbiota can affect the metabolic transformation of chemical constituents in B. kansuensis extract. These findings can enhance our understanding of the active ingredients of B. kansuensis extract and the key role of the gut microbiota on them.


2018 ◽  
Vol 15 (1) ◽  
pp. 21-33
Author(s):  
Ying Wei ◽  
Yongqiao Liu ◽  
Yifan Hele ◽  
Weiwei Sun ◽  
Yang Wang ◽  
...  

Background: Gentianella acuta (Michx.) Hulten is an important type of medicinal plant found in several Chinese provinces. It has been widely used in folk medicine to treat various illnesses. However, there is not enough detailed information about the chemical constituents of this plant or methods for their content determination. Objective: The focus of this work is the isolation and characterization of the major chemical constituents of Gentianella acuta, and developing an analytical method for their determination. Methods: The components of Gentianella acuta were isolated using (1) ethanol extraction and adsorption on macroporous resin. (2) and ethyl acetate extraction and high speed countercurrent chromatography. A HPLC-DAD method was developed using a C18 column and water-acetonitrile as the mobile phase. Based on compound polarities, both isocratic and gradient elution methods were developed. Results: A total of 29 compounds were isolated from this plant, of which 17 compounds were isolated from this genus for the first time. The main components in this plant were found to be xanthones. The HPLC-DAD method was developed and validated for their determination, and found to show good sensitivity and reliability. Conclusion: The results of this work add to the limited body of work available on this important medicinal plant. The findings will be useful for further investigation and development of Gentianella acuta for its valuable medicinal properties.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3977
Author(s):  
Shaoyun Wang ◽  
Xiaozhu Sun ◽  
Shuo An ◽  
Fang Sang ◽  
Yunli Zhao ◽  
...  

Polygoni Multiflori Radix Praeparata (PMRP), as the processed product of tuberous roots of Polygonum multiflorum Thunb., is one of the most famous traditional Chinese medicines, with a long history. However, in recent years, liver adverse reactions linked to PMRP have been frequently reported. Our work attempted to investigate the chemical constituents of PMRP for clinical research and safe medication. In this study, an effective and rapid method was established to separate and characterize the constituents in PMRP by combining ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). Based on the accurate mass measurements for molecular and characteristic fragment ions, a total of 103 compounds, including 24 anthraquinones, 21 stilbenes, 15 phenolic acids, 14 flavones, and 29 other compounds were identified or tentatively characterized. Forty-eight compounds were tentatively characterized from PMRP for the first time, and their fragmentation behaviors were summarized. There were 101 components in PMRP ethanol extract (PMRPE) and 91 components in PMRP water extract (PMRPW). Simultaneously, the peak areas of several potential xenobiotic components were compared in the detection, which showed that PMRPE has a higher content of anthraquinones and stilbenes. The obtained results can be used in pharmacological and toxicological research and provided useful information for further in vitro and in vivo studies.


2011 ◽  
Vol 76 (9) ◽  
pp. 1133-1139 ◽  
Author(s):  
Pham Thi Nhat Trinh ◽  
Nguyen Cong Hao ◽  
Phan Thanh Thao ◽  
Le Tien Dung

From the ethanol extract of Drynaria fortunei (KUNZE) J. Sm., a new phenylpropanoid glycoside, fortunamide (1), was isolated and characterized by spectroscopic methods. Together with a new glycoside, 9 known compounds, including three curcuminoids (2–4), two isoprenylated flavonoids (5, 6), two flavonoids (7, 8), one monoterpenoid (9) and one phenolic acid (10) were isolated and identified by spectral data analysis from the rhizomes of Drynaria fortunei (KUNZE) J. Sm. Eight of them were isolated from Drynaria fortunei (KUNZE) J. Sm. for the first time.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 233 ◽  
Author(s):  
Huanyu Guan ◽  
Xiaomei Luo ◽  
Xiaoyan Chang ◽  
Meifeng Su ◽  
Zhuangzhuang Li ◽  
...  

Wen Luo Yin (WLY), a well-known traditional Chinese medicine formulation, has been used as a complementary therapy for the treatment of rheumatoid arthritis in clinical settings. However, the chemical constituents of WLY remain unclear. In this study, a high-performance liquid chromatography coupled with tandem mass spectrometry method was established to separate and comprehensively identify the chemical constituents of WLY. The analytes were eluted with a mobile phase of acetonitrile and 0.1% aqueous acetic acid. Mass detection was performed in both positive and negative ion mode. The MS/MS fragmentation pathways were proposed for the identification of the components. A total of 42 compounds including sesquiterpenes, alkaloids, biflavonoids, polyacetylenes, phenylpropanoids and acetylenic phenols were identified unambiguously or tentatively according to their retention times and mass behavior with those of authentic standards or literature data. The identification and structural elucidation of chemical constituents may provide important information for quality control and pharmacological research of WLY.


2018 ◽  
Vol 5 (4) ◽  
pp. 79 ◽  
Author(s):  
Pilar A. Soledispa ◽  
José González ◽  
Armando Cuéllar ◽  
Julio Pérez ◽  
Max Monan

A preliminary chemical characterization of main components of ethanolic extract with dried rhizomes of Smilax domingensis Wid. that grow in Cuba was done using a GCMS-QP2010 Ultra Shimadzu and the mass spectra of the compounds found in the extract was matched with the National Institute of Standards and Technology (NIST) library. After sample derivatization 125 chemical compounds were registered by the equipment and from them, 35 different chemical components were characterized and reported for the first time from this part of the plant in our country. The results demonstrate the developed method could be employed as a rapid and versatile analytical technique for identification of chemical constituents and quality control of Smilax domingensis.


2008 ◽  
Vol 3 (5) ◽  
pp. 1934578X0800300
Author(s):  
Jin-qiang Zhang ◽  
Min Yang ◽  
Bao-hong Jiang ◽  
Hui-lian Huang ◽  
Guang-tong Chen ◽  
...  

Luan-Pao-Prescription is a famous Chinese herbal formula, which is commonly used for the treatment of female sterility in clinical practice in China. In the present paper, a reliable method based on liquid chromatography coupled with electrospray ionization tandem mass spectrometry in both positive and negative ion modes has been established for the analysis of major chemical constituents in Luan-Pao-Prescription. A total of 34 compounds were either identified or tentatively characterized. These compounds include flavonoids, anthraquinones, iridoids, xanthones and organic acids. Flavonoids were the major constituents of the formula. The results profiled the chemical composition of Luan-Pao-Prescription comprehensively for the first time.


Author(s):  
Alaa M. Abd ◽  
Enas J. Kadhim

 The aim of this study was to study chemical constituents of aerial parts of Cardaria draba since no phytochemical investigation had been studied before in Iraq. Aerial parts of Cardaria draba were defatted by maceration in hexane for 72 h. The defatted plant materials were extracted using Soxhlet apparatus, the aqueous Methanol 90% as a solvent extraction for 18 h, and fractionated with petroleum ether- chloroform (CHCl3)- ethylacetate- and n-butanol respectivly. The ethyl acetate, n-butanol, and n-butanol after hydrolysis fractions were investigated by high performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) for its phenolic acid and flavonoid contents. Flavonoids and phenolic acid derivative were isolated from the ethylacetate of leaf fraction and n-butanol after hydrolysis fraction of the aerial parts and identified by TLC, FTIR and HPLC. A various chromatographic and spectroscopic results shown the presence of luteolin, chlorogenic acid, caffeic acid, and resorcinol in aerial parts of C. draba.                                                                                                                              


2001 ◽  
Vol 71 (3) ◽  
pp. 558-564
Author(s):  
Erzsebet Varga ◽  
Erzsebet Domokos ◽  
Hajnal Kelemen ◽  
Ibolya Fulop ◽  
Laszlo Kursinszki

Bathurst burr (Xanthium spinosum L.) is used worldwide in traditional medicine to treat a diverse range of health problems including urinary problems associated with various prostate diseases. The aim of this study was to complete the identification and structural characterization of the chemical constituents from the aerial part of X. spinosum by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. From the unequivocally detected and characterized compounds of aqueous-methanol extract, protocatechuic acid, 4-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid were found for the first time in X. spinosum. Besides these compounds, 25 phenolics (including 7 hydroxybenzoic derivatives, 13 hydroxycinnamic derivatives, one benzyl alcohol-hexose-pentose, and 4 flavonoids), 6 sesquiterpenes and 3 diterpenes were tentatively identified.


2021 ◽  
Author(s):  
Yuanyuan Xu ◽  
Yuan Gao ◽  
Zhong Chen ◽  
Guochun Zhao ◽  
Jiming Liu ◽  
...  

Abstract Soapberry (Sapindus mukorossi Gaertn.) is a multi-functional tree, which is widely used in daily chemicals, biomedicine, biomass energy and landscaping. The pericarp of soapberry can be used as medicine or detergent. However, there is no systematic study on chemical constituents of soapberry pericarp in fruit development, and the dynamic changes of these constituents are far from clear. In this study, we applied a non-targeted metabolomics approach using an ultra-high performance liquid chromatography-Q Exactive HF hybrid quadrupole-Orbitrap mass spectrometer (UHPLC-QE-HF-MS) to comprehensively profile the variations of metabolites in soapberry pericarp at eight fruit development stages. The metabolome coverage of UHPLC-QE-HF-MS on a HILIC column was higher than that of a C18 column. A total of 111 metabolites were putatively identified, and these metabolites showed three accumulation patterns (pre-accumulation, mid-accumulation and post-accumulation) with fruit development. Twenty-five of these 111 metabolites (including amino acids and their derivatives, flavonoids, organic acids, fatty acids, nucleotides and their derivatives, alkaloids, carbohydrates, terpenoids, vitamins, phosphorylated intermediates) were present at significantly different levels between the two adjacent stages, which were involved in 13 KEGG pathways, among them 5 pathways (flavonoid biosynthesis; histidine metabolism; aminoacyl-tRNA biosynthesis; flavone and flavonol biosynthesis; and phenylalanine, tyrosine and tryptophan biosynthesis) were most relevant. S8 stage (fruit ripening stage) is the most suitable stage for fruit harvesting to utilize the pericarp, during which the accumulation of many bioactive and valuable metabolites (e.g., furamizole, alpha-tocopherol quinone, sucrose) in the pericarp was highest. To the best of our knowledge, this was the first time that the metabolomics in soapberry pericarp during the whole fruit development was profiled. This study will be beneficial to guide the harvesting, processing and application, and pave the way for further studies on the biosynthesis mechanism of the main metabolites of the soapberry pericarp.


Sign in / Sign up

Export Citation Format

Share Document