scholarly journals THU0030 Increased collagen production by human lung fibroblasts in the response to tumour necrosis factor-related apoptosis-inducing ligand

Author(s):  
VV Yurovsky
2015 ◽  
Vol 309 (8) ◽  
pp. L821-L833 ◽  
Author(s):  
Anurag Mishra ◽  
Todd A. Stueckle ◽  
Robert R. Mercer ◽  
Raymond Derk ◽  
Yon Rojanasakul ◽  
...  

Carbon nanotubes (CNTs) induce rapid interstitial lung fibrosis, but the underlying mechanisms are unclear. Previous studies indicated that the ability of CNTs to penetrate lung epithelium, enter interstitial tissue, and stimulate fibroblasts to produce collagen matrix is important to lung fibrosis. In this study, we investigated the activation of transforming growth factor-β receptor-1 [TGF-β R1; i.e., activin receptor-like kinase 5 (ALK5) receptor] and TGF-β/Smad signaling pathway in CNT-induced collagen production in human lung fibroblasts. Human lung fibroblasts and epithelial cells were exposed to low, physiologically relevant concentrations (0.02–0.6 μg/cm2) of single-walled CNTs (SWCNT) and multiwalled CNTs (MWCNT) in culture and analyzed for collagen, TGF-β1, TGF-β R1, and SMAD proteins by Western blotting and immunofluorescence. Chemical inhibition of ALK5 and short-hairpin (sh) RNA targeting of TGF-β R1 and Smad2 were used to probe the fibrogenic mechanism of CNTs. Both SWCNT and MWCNT induced an overexpression of TGF-β1, TGF-β R1 and Smad2/3 proteins in lung fibroblasts compared with vehicle or ultrafine carbon black-exposed controls. SWCNT- and MWCNT-induced collagen production was blocked by ALK5 inhibitor or shRNA knockdown of TGF-β R1 and Smad2. Our results indicate the critical role of TGF-β R1/Smad2/3 signaling in CNT-induced fibrogenesis by upregulating collagen production in lung fibroblasts. This novel finding may aid in the design of mechanism-based risk assessment and development of rapid screening tests for nanomaterial fibrogenicity.


1993 ◽  
Vol 264 (3) ◽  
pp. L253-L260 ◽  
Author(s):  
R. J. Zitnik ◽  
T. Zheng ◽  
J. A. Elias

We characterized the effects of agents that alter intracellular adenosine 3',5'-cyclic monophosphate (cAMP) on the interleukin (IL)-6 production of human lung fibroblasts. Unstimulated fibroblasts did not produce significant amounts of IL-6. Recombinant (r) tumor necrosis factor (TNF) weakly stimulated, recombinant interleukin-1-alpha (rIL-1 alpha) strongly stimulated, and rIL-1 alpha and rTNF in combination synergistically augmented fibroblast IL-6 production. Prostaglandin (PG)E1, forskolin, dibutyryl cAMP (DBcAMP), 3-isobutyl-1-methylxanthine (IBMX), and cholera toxin did not cause a detectable alteration in the IL-6 production of unstimulated fibroblasts. However, these agents inhibited the IL-6 production of rIL-1 and rIL-1 plus rTNF-stimulated cells. These effects were dose dependent with a concentration of 2 x 10(-9) M PGE1, 5 x 10(-6) M forskolin, 5 x 10(-4) M DBcAMP, and 1 x 10(-3) M IBMX decreasing rIL-1 alpha (2.5 ng/ml)-induced IL-6 production by approximately 50%. The inhibitory effects of these agents, correlated with their ability to induce fibroblast cAMP accumulation, could not be explained by alterations in cell number or viability and were appreciable even when cAMP modifiers were added to fibroblast culture, 1 h after rIL-1. They were also at least partly specific for rIL-1, since these agents increased the IL-6 production of rTNF-stimulated cells. These cAMP-induced alterations in IL-6 production were associated with corresponding alterations in IL-6 mRNA accumulation. Nuclear run-on analysis demonstrated that the inhibitory effects of PGE1 were associated with a comparable decrease in IL-6 transcription. Agents that increase the levels of intracellular cAMP inhibit rIL-1-induced IL-6 by human lung fibroblasts.


2004 ◽  
Vol 91 (4) ◽  
pp. 740-748 ◽  
Author(s):  
David C. Rishikof ◽  
Dennis A. Ricupero ◽  
Hanqiao Liu ◽  
Ronald H. Goldstein

Sign in / Sign up

Export Citation Format

Share Document