scholarly journals Correction: A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults

2020 ◽  
Vol 54 (19) ◽  
pp. e7-e7
2017 ◽  
Vol 52 (6) ◽  
pp. 376-384 ◽  
Author(s):  
Robert W Morton ◽  
Kevin T Murphy ◽  
Sean R McKellar ◽  
Brad J Schoenfeld ◽  
Menno Henselmans ◽  
...  

ObjectiveWe performed a systematic review, meta-analysis and meta-regression to determine if dietary protein supplementation augments resistance exercise training (RET)-induced gains in muscle mass and strength.Data sourcesA systematic search of Medline, Embase, CINAHL and SportDiscus.Eligibility criteriaOnly randomised controlled trials with RET ≥6 weeks in duration and dietary protein supplementation.DesignRandom-effects meta-analyses and meta-regressions with four a priori determined covariates. Two-phase break point analysis was used to determine the relationship between total protein intake and changes in fat-free mass (FFM).ResultsData from 49 studies with 1863 participants showed that dietary protein supplementation significantly (all p<0.05) increased changes (means (95% CI)) in: strength—one-repetition-maximum (2.49 kg (0.64, 4.33)), FFM (0.30 kg (0.09, 0.52)) and muscle size—muscle fibre cross-sectional area (CSA; 310 µm2 (51, 570)) and mid-femur CSA (7.2 mm2 (0.20, 14.30)) during periods of prolonged RET. The impact of protein supplementation on gains in FFM was reduced with increasing age (−0.01 kg (−0.02,–0.00), p=0.002) and was more effective in resistance-trained individuals (0.75 kg (0.09, 1.40), p=0.03). Protein supplementation beyond total protein intakes of 1.62 g/kg/day resulted in no further RET-induced gains in FFM.Summary/conclusionDietary protein supplementation significantly enhanced changes in muscle strength and size during prolonged RET in healthy adults. Increasing age reduces and training experience increases the efficacy of protein supplementation during RET. With protein supplementation, protein intakes at amounts greater than ~1.6 g/kg/day do not further contribute RET-induced gains in FFM.


Author(s):  
Pedro J. Benito ◽  
Rocío Cupeiro ◽  
Domingo J. Ramos-Campo ◽  
Pedro E. Alcaraz ◽  
Jacobo Á. Rubio-Arias

We performed a systematic review and meta-analysis to study all published clinical trial interventions, determined the magnitude of whole-body hypertrophy in humans (healthy males) and observed the individual responsibility of each variable in muscle growth after resistance training (RT). Searches were conducted in PubMed, Web of Science and the Cochrane Library from database inception until 10 May 2018 for original articles assessing the effects of RT on muscle size after interventions of more than 2 weeks of duration. Specifically, we obtain the variables fat-free mass (FMM), lean muscle mass (LMM) and skeletal muscle mass (SMM). The effects on outcomes were expressed as mean differences (MD) and a random-effects meta-analysis and meta-regressions determined covariates (age, weight, height, durations in weeks…) to explore the moderate effect related to the participants and characteristics of training. One hundred and eleven studies (158 groups, 1927 participants) reported on the effects of RT for muscle mass. RT significantly increased muscle mass (FFM+LMM+SMM; Δ1.53 kg; 95% CI [1.30, 1.76], p < 0.001; I2 = 0%, p = 1.00). Considering the overall effects of the meta-regression, and taking into account the participants’ characteristics, none of the studied covariates explained any effect on changes in muscle mass. Regarding the training characteristics, the only significant variable that explained the variance of the hypertrophy was the sets per workout, showing a significant negative interaction (MD; estimate: 1.85, 95% CI [1.45, 2.25], p < 0.001; moderator: -0.03 95% CI [−0.05, −0.001] p = 0.04). In conclusion, RT has a significant effect on the improvement of hypertrophy (~1.5 kg). The excessive sets per workout affects negatively the muscle mass gain.


Author(s):  
Darío Rodrigo-Mallorca ◽  
Andrés Felipe Loaiza-Betancur ◽  
Pablo Monteagudo ◽  
Cristina Blasco-Lafarga ◽  
Iván Chulvi-Medrano

Low-intensity training with blood flow restriction (LI-BFR) has been suggested as an alternative to high-intensity resistance training for the improvement of strength and muscle mass, becoming advisable for individuals who cannot assume such a load. The systematic review aimed to determine the effectiveness of the LI-BFR compared to dynamic high-intensity resistance training on strength and muscle mass in non-active older adults. A systematic review was conducted according to the Cochrane Handbook and reportedly followed the PRISMA statement. MEDLINE, EMBASE, Web of Science Core Collection, and Scopus databases were searched between September and October 2020. Two reviewers independently selected the studies, extracted data, assessed the risk of bias and the quality of evidence using the GRADE approach. Twelve studies were included in the qualitative synthesis. Meta-analysis pointed out significant differences in maximal voluntary contraction (MVC): SMD 0.61, 95% CI [0.10, 1.11], p = 0.02, I2 71% p < 0.0001; but not in the repetition maximum (RM): SMD 0.07, 95% CI [−0.25, 0.40], p = 0.66, I2 0% p < 0.53; neither in the muscle mass: SMD 0.62, 95% CI [−0.09, 1.34], p = 0.09, I2 59% p = 0.05. Despite important limitations such as scarce literature regarding LI-BFR in older adults, the small sample size in most studies, the still differences in methodology and poor quality in many of them, this systematic review and meta-analysis revealed a positive benefit in non-active older adults. LI- BFR may induce increased muscular strength and muscle mass, at least at a similar extent to that in the traditional high-intensity resistance training.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259574
Author(s):  
Leonardo Peterson dos Santos ◽  
Rafaela Cavalheiro do Espírito Santo ◽  
Thiago Rozales Ramis ◽  
Juliana Katarina Schoer Portes ◽  
Rafael Mendonça da Silva Chakr ◽  
...  

Introduction Rheumatoid arthritis(RA) and osteoarthritis(OA) patients showed systemic manifestations that may lead to a reduction in muscle strength, muscle mass and, consequently, to a reduction in functionality. On the other hand, moderate intensity resistance training(MIRT) and high intensity resistance training(HIRT) are able to improve muscle strength and muscle mass in RA and OA without affecting the disease course. However, due to the articular manifestations caused by these diseases, these patients may present intolerance to MIRT or HIRT. Thus, the low intensity resistance training combined with blood flow restriction(LIRTBFR) may be a new training strategy for these populations. Objective To perform a systematic review with meta-analysis to verify the effects of LIRTBFR on muscle strength, muscle mass and functionality in RA and OA patients. Materials and methods A systematic review with meta-analysis of randomized clinical trials(RCTs), published in English, between 1957–2021, was conducted using MEDLINE(PubMed), Embase and Cochrane Library. The methodological quality was assessed using Physiotherapy Evidence Database scale. The risk of bias was assessed using RoB2.0. Mean difference(MD) or standardized mean difference(SMD) and 95% confidence intervals(CI) were pooled using a random-effects model. A P<0.05 was considered statistically significant. Results Five RCTs were included. We found no significant differences in the effects between LIRTBFR, MIRT and HIRT on muscle strength, which was assessed by tests of quadriceps strength(SMD = -0.01[-0.57, 0.54], P = 0.96; I² = 58%) and functionality measured by tests with patterns similar to walking(SMD = -0.04[-0.39, 0.31], P = 0.82; I² = 0%). Compared to HIRT, muscle mass gain after LIRTBFR was reported to be similar. When comparing LIRTBFR with low intensity resistance training without blood flow restriction(LIRT), the effect LIRTBFR was reported to be higher on muscle strength, which was evaluated by the knee extension test. Conclusion LIRTBFR appears to be a promising strategy for gains in muscle strength, muscle mass and functionality in a predominant sample of RA and OA women.


Sign in / Sign up

Export Citation Format

Share Document