scholarly journals Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects

2020 ◽  
Vol 8 (1) ◽  
pp. e000948 ◽  
Author(s):  
Martha Guevara-Cruz ◽  
Einar T Godinez-Salas ◽  
Monica Sanchez-Tapia ◽  
Gonzalo Torres-Villalobos ◽  
Edgar Pichardo-Ontiveros ◽  
...  

ObjectiveObesity is associated with metabolic abnormalities, including insulin resistance and dyslipidemias. Previous studies demonstrated that genistein intake modifies the gut microbiota in mice by selectively increasing Akkermansia muciniphila, leading to reduction of metabolic endotoxemia and insulin sensitivity. However, it is not known whether the consumption of genistein in humans with obesity could modify the gut microbiota reducing the metabolic endotoxemia and insulin sensitivity.Research design and methods45 participants with a Homeostatic Model Assessment (HOMA) index greater than 2.5 and body mass indices of ≥30 and≤40 kg/m2 were studied. Patients were randomly distributed to consume (1) placebo treatment or (2) genistein capsules (50 mg/day) for 2 months. Blood samples were taken to evaluate glucose concentration, lipid profile and serum insulin. Insulin resistance was determined by means of the HOMA for insulin resistance (HOMA-IR) index and by an oral glucose tolerance test. After 2 months, the same variables were assessed including a serum metabolomic analysis, gut microbiota, and a skeletal muscle biopsy was obtained to study the gene expression of fatty acid oxidation.ResultsIn the present study, we show that the consumption of genistein for 2 months reduced insulin resistance in subjects with obesity, accompanied by a modification of the gut microbiota taxonomy, particularly by an increase in the Verrucomicrobia phylum. In addition, subjects showed a reduction in metabolic endotoxemia and an increase in 5′-adenosine monophosphate-activated protein kinase phosphorylation and expression of genes involved in fatty acid oxidation in skeletal muscle. As a result, there was an increase in circulating metabolites of β-oxidation and ω-oxidation, acyl-carnitines and ketone bodies.ConclusionsChange in the gut microbiota was accompanied by an improvement in insulin resistance and an increase in skeletal muscle fatty acid oxidation. Therefore, genistein could be used as a part of dietary strategies to control the abnormalities associated with obesity, particularly insulin resistance; however, long-term studies are needed.


2007 ◽  
Vol 293 (2) ◽  
pp. R642-R650 ◽  
Author(s):  
John J. Dube ◽  
Bankim A. Bhatt ◽  
Nikolas Dedousis ◽  
Arend Bonen ◽  
Robert M. O'Doherty

Leptin-induced increases in insulin sensitivity are well established and may be related to the effects of leptin on lipid metabolism. However, the effects of leptin on the levels of lipid metabolites implicated in pathogenesis of insulin resistance and the effects of leptin on lipid-induced insulin resistance are unknown. The current study addressed in rats the effects of hyperleptinemia (HL) on insulin action and markers of skeletal muscle (SkM) lipid metabolism in the absence or presence of acute hyperlipidemia induced by an infusion of a lipid emulsion. Compared with controls (CONT), HL increased insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp (∼15%), and increased SkM Akt (∼30%) and glycogen synthase kinase 3α (∼52%) phosphorylation. These improvements in insulin action were associated with decreased SkM triglycerides (TG; ∼61%), elevated ceramides (∼50%), and similar diacylglycerol (DAG) levels in HL compared with CONT. Acute hyperlipidemia in CONT decreased insulin sensitivity (∼25%) and increased SkM DAG (∼33%) and ceramide (∼60%) levels. However, hyperlipidemia did not induce insulin resistance or SkM DAG and ceramide accumulation in HL. SkM total fatty acid transporter CD36, plasma membrane fatty acid binding protein, acetyl Co-A carboxylase phosphorylation, and fatty acid oxidation were similar in HL compared with CONT. However, HL decreased SkM protein kinase Cθ (PKCθ), a kinase implicated in mediating the detrimental effects of lipids on insulin action. We conclude that increases in insulin sensitivity induced by HL are associated with decreased levels of SkM TG and PKCθ and increased SkM insulin signaling, but not with decreases in other lipid metabolites implicated in altering SkM insulin sensitivity (DAG and ceramide). Furthermore, insulin resistance induced by an acute lipid infusion is prevented by HL.



2009 ◽  
Vol 34 (3) ◽  
pp. 440-446 ◽  
Author(s):  
Graham P. Holloway

Fatty acid translocase (FAT/CD36) represents a novel flexible regulatory system, influencing rates of mitochondrial fatty acid metabolism in both human and rodent skeletal muscle. During exercise, the subcellular redistribution of FAT/CD36 provides a mechanism to increase not only plasma membrane fatty acid transport, but also mitochondrial fatty acid oxidation. This FAT/CD36-mediated coordination of long chain fatty acid (LCFA) transport and oxidation is an intriguing model in the context of insulin resistance. It was believed for almost a decade that reductions in fatty acid oxidation increased intramuscular lipids, thereby contributing to insulin resistance. A reduction in mitochondrial content may reduce the capacity of skeletal muscle LCFA oxidation; however, work from my laboratory has shown that, in some insulin-resistant muscles, mitochondrial content and fatty acid oxidation are both increased, yet these muscles accumulate lipids because of a considerably greater increase in fatty acid transport. Therefore, an alternative model is being considered, in which the balance between LCFA uptake and oxidation is a determining factor in the development of insulin resistance. A permanent redistribution of the LCFA transport protein FAT/CD36 to the sarcolemmal has been consistently found, which results in an increased rate of LCFA transport. This work suggests that the accumulation of skeletal muscle lipids, regardless of changes in mitochondria, is attributable to an increased rate of LCFA transport that exceeds the capacity for oxidation.



2008 ◽  
Vol 7 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Timothy R. Koves ◽  
John R. Ussher ◽  
Robert C. Noland ◽  
Dorothy Slentz ◽  
Merrie Mosedale ◽  
...  


2021 ◽  
Author(s):  
Norihiro Imai ◽  
Hayley T. Nicholls ◽  
Michele Alves-Bezerra ◽  
Yingxia Li ◽  
Anna A. Ivanova ◽  
...  

ABSTRACTThioesterase superfamily member 2 (Them2) is highly expressed in oxidative tissues where it hydrolyzes long chain fatty acyl-CoA esters to free fatty acids and CoA. Although mice globally lacking Them2 (Them2-/-) are protected against diet-induced obesity, insulin resistance and hepatic steatosis, liver-specific Them2-/- mice remain susceptible. To explore the contribution of Them2 in extrahepatic tissues, we created mice with Them2 deleted in skeletal muscle (S-Them2-/-), cardiac muscle (C-Them2-/-) or adipose tissue (A-Them2-/-). When fed a high-fat diet, S-Them2-/- but not C-Them2-/- or A-Them2-/- mice exhibited reduced weight gain. Only S-Them2-/- mice exhibited improved glucose homeostasis together with improved insulin sensitivity in skeletal muscle. Increased rates of fatty acid oxidation in skeletal muscle of S-Them2-/- mice were reflected in alterations in skeletal muscle metabolites, including short chain fatty acids, branched chain amino acids and the pentose phosphate pathway. Protection from diet-induced hepatic steatosis in S-Them2-/- mice was attributable to increased VLDL triglyceride secretion rates in support of demands of increased muscle fatty acid utilization. These results reveal a key role for skeletal muscle Them2 in the pathogenesis of diet-induced obesity, insulin resistance and hepatic steatosis.



2017 ◽  
Vol 103 (3) ◽  
pp. 882-889 ◽  
Author(s):  
Timothy P Gavin ◽  
Jacob M Ernst ◽  
Hyo-Bum Kwak ◽  
Sarah E Caudill ◽  
Melissa A Reed ◽  
...  

Abstract Context Almost 50% of type 2 diabetic (T2D) patients are poorly controlled [glycated hemoglobin (HbA1c) ≥ 7%]; however, the mechanisms responsible for progressively worsening glycemic control are poorly understood. Lower skeletal muscle mitochondrial respiratory capacity is associated with low insulin sensitivity and the development of T2D. Objective We investigated if skeletal muscle insulin sensitivity (SI) was different between well-controlled T2D (WCD) and poorly controlled T2D (PCD) and if the difference was associated with differences resulting from mitochondrial respiratory function. Design Vastus lateralis muscle mitochondrial respiration, mitochondrial content, mitochondrial enzyme activity, and fatty acid oxidation (FAO) were measured. SI and the acute response to glucose (AIRg) were calculated by MINMOD analysis from glucose and insulin obtained during a modified, frequently sampled, intravenous glucose tolerance test. Results SI and AIRg were lower in PCD than WCD. Muscle incomplete FAO was greater in PCD than WCD and greater incomplete FAO was associated with lower SI and higher HbA1c. Hydroxyacyl-coenzyme A dehydrogenase expression and activity were greater in PCD than WCD. There was no difference in maximal mitochondrial respiration or content between WCD and PCD. Conclusion The current results suggest that greater skeletal muscle incomplete FAO in poorly controlled T2D is due to elevated β oxidation and is associated with worsening muscle SI.



2010 ◽  
Vol 299 (3) ◽  
pp. R804-R812 ◽  
Author(s):  
Hakam Alkhateeb ◽  
Arend Bonen

Thujone is thought to be the main constituent of medicinal herbs that have antidiabetic properties. Therefore, we examined whether thujone ameliorated palmitate-induced insulin resistance in skeletal muscle. Soleus muscles were incubated for ≤12 h without or with palmitate (2 mM). Thujone (0.01 mg/ml), in the presence of palmitate, was provided in the last 6 h of incubation. Palmitate oxidation, AMPK/acetyl-CoA carboxylase (ACC) phosphorylation and insulin-stimulated glucose transport, plasmalemmal GLUT4, and AS160 phosphorylation were examined at 0, 6, and 12 h. Palmitate treatment for 12 h reduced fatty acid oxidation (−47%), and insulin-stimulated glucose transport (−71%), GLUT4 translocation (−40%), and AS160 phosphorylation (−26%), but it increased AMPK (+51%) and ACC phosphorylations (+44%). Thujone (6–12 h) fully rescued palmitate oxidation and insulin-stimulated glucose transport, but only partially restored GLUT4 translocation and AS160 phosphorylation, raising the possibility that an increased GLUT4 intrinsic activity may also have contributed to the restoration of glucose transport. Thujone also further increased AMPK phosphorylation but had no further effect on ACC phosphorylation. Inhibition of AMPK phosphorylation with adenine 9-β-d-arabinofuranoside (Ara) (2.5 mM) or compound C (50 μM) inhibited the thujone-induced improvement in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. In contrast, the thujone-induced improvement in palmitate oxidation was only slightly inhibited (≤20%) by Ara or compound C. Thus, while thujone, a medicinal herb component, rescues palmitate-induced insulin resistance in muscle, the improvement in fatty acid oxidation cannot account for this thujone-mediated effect. Instead, the rescue of palmitate-induced insulin resistance appears to occur via an AMPK-dependent mechanism involving partial restoration of insulin-stimulated GLUT4 translocation.



2009 ◽  
Vol 34 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Arend Bonen

The peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a nuclear encoded transcriptional coactivator, increases the expression of many genes in skeletal muscle, including those involved with fatty acid oxidation and oxidative phosphorylation. Exercise increases the expression of PGC-1α, and the exercise-induced upregulation of many genes is attributable, in part, to the preceding activation and upregulation of PGC-1α. Indeed, PGC-1α overexpression, like exercise training, increases exercise performance. PGC-1α reductions in humans have been observed in type 2 diabetes, while, in cell lines, PGC-1α mimics the exercise-induced improvement in insulin sensitivity. However, unexpectedly, in mammalian muscle, PGC-1α overexpression contributed to the development of diet-induced insulin resistance. This may have been related to the massive overexpression of PGC-1α, which induced the upregulation of the fatty acid transporter FAT/CD36 and led to an increase in intramuscular lipids, which interfere with insulin signalling. In contrast, when PGC-1α was overexpressed modestly, within physiological limits, mitochondrial fatty acid oxidation was increased, GLUT4 expression was upregulated, and insulin-stimulated glucose transport was increased. More recently, similar PGC-1α-induced improvements in the insulin-resistant skeletal muscle of obese Zucker rats have been observed. These studies suggest that massive PGC-1α overexpression, but not physiologic PGC-1α overexpression, induces deleterious metabolic effects, and that exercise-induced improvements in insulin sensitivity are induced, in part, by the exercise-induced upregulation of PGC-1α.



2012 ◽  
Vol 53 ◽  
pp. S99
Author(s):  
Shawna E. Wicks ◽  
Bolormaa Vandanmagsar ◽  
Kimberly R. Haynie ◽  
Jingying Zhang ◽  
Robert Noland ◽  
...  


2017 ◽  
Vol 42 (2) ◽  
pp. 564-578 ◽  
Author(s):  
Agustín G. Sabater ◽  
Joan Ribot ◽  
Teresa Priego ◽  
Itxaso Vazquez ◽  
Sonja Frank ◽  
...  

Background/Aims: The aim of this study was to gain more insight into the beneficial effects of mango fruit powder on the early metabolic adverse effects of a high-fat diet. Methods: The progressive dose-response effects of mango fruit powder on body composition, circulating parameters, and the expression of genes related to fatty acid oxidation and insulin sensitivity in key tissues were studied in mice fed a moderate (45%) high-fat diet. Results: Findings suggest that mango fruit powder exerts physiological protective effects in the initial steps of insulin resistance and hepatic lipid accumulation induced by a high-fat diet in mice. Moreover, AMPK and SIRT1 appear as key regulators of the observed improvement in fatty acid oxidation capacity, as well as of the improved insulin sensitivity and the increased glucose uptake and metabolism through the glycolytic pathway capacity in liver and skeletal muscle. Conclusion: In summary, this study provides evidence that the functional food ingredient (CarelessTM) from mango fruit prevents early metabolic alterations caused by a high-fat diet in the initial stages of the metabolic syndrome.



Sign in / Sign up

Export Citation Format

Share Document