scholarly journals Avoidance of vitamin D deficiency to slow the COVID-19 pandemic

2020 ◽  
Vol 3 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Martin Kohlmeier

Vitamin D deficiency, which impedes good immune function, is common during winter and spring in regions of high latitude. There is good evidence that vitamin D deficiency contributes to the seasonal increase of virus infections of the respiratory tract, from the common cold to influenza, and now possibly also COVID-19. This communication explores key factors that make it more likely, particularly in combination, that individuals are vitamin D deficient. These factors include old age, obesity, dark skin tone and common genetic variants that impede vitamin D status. Precision nutrition is an approach that aims to consider known personal risk factors and health circumstances to provide more effective nutrition guidance in health and disease. In regard to avoiding vitamin D deficiency, people with excess body fat, a dark skin tone or older age usually need to use a moderately dosed daily vitamin D supplement, particularly those living in a high-latitude region, getting little ultraviolet B exposure due to air pollution or staying mostly indoors. Carriers of the GC (group-specific component) rs4588 AA genotype also are more likely to become deficient. Very high-dosed supplements with more than 4000 IU vitamin D are rarely needed or justified. A state-by-state Mendelian randomisation analysis of excess COVID-19 mortality of African-Americans in the USA shows a greater disparity in northern states than in southern states. It is conceivable that vitamin D adequacy denies the virus easy footholds and thereby slows spreading of the contagion. This finding should drive home the message that vitamin D supplementation is particularly important for individuals with dark skin tones. Vitamin D deficiency, even for a few months during the winter and spring season, must be rigorously remedied because of its many adverse health impacts that include decreased life expectancy and increased mortality. Slowing the spread of COVID-19 would be an added bonus.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Vidya Lakshmi Purushothaman ◽  
Raphael E. Cuomo ◽  
Cedric F. Garland ◽  
Timothy K. Mackey

Abstract Background Vitamin D has been identified as a potential protective factor in the development of colorectal cancer (CRC). We expect to see a stronger association of ultraviolet B (UVB) exposure and CRC crude rates with increasing age since chronic vitamin D deficiency leads to sustained molecular changes that increase cancer risk. The DINOMIT (disjunction, initiation, natural selection, overgrowth, metastasis, involution, and transition) model postulates various stages of cancer development due to vitamin D deficiency and the associated latency period. The purpose of this study is to examine this age-dependent inverse relationship globally. Methods In this ecological study, a series of linear and polynomial regression tests were performed between country-specific UVB estimates adjusted for cloud cover and crude incidence rates of CRC for different age groups. Multiple linear regression was used to investigate the association between crude incidence rates of colorectal cancer and UVB estimate adjusting for urbanization, skin pigmentation, smoking, animal consumption, per capita GDP, and life expectancy. Statistical analysis was followed by geospatial visualization by producing choropleth maps. Results The inverse relationship between UVB exposure and CRC crude rates was stronger in older age groups at the country level. Quadratic curve fitting was preferred, and these models were statistically significant for all age groups. The inverse association between crude incidence rates of CRC and UVB exposure was statistically significant for age groups above 45 years, after controlling for covariates. Conclusion The age-dependent inverse association between UVB exposure and incidence of colorectal cancer exhibits a greater effect size among older age groups in global analyses. Studying the effect of chronic vitamin D deficiency on colorectal cancer etiology will help in understanding the necessity for population-wide screening programs for vitamin D deficiency, especially in regions with inadequate UVB exposure. Further studies are required to assess the need for adequate public health programs such as selective supplementation and food fortification.


2021 ◽  
pp. bmjnph-2020-000151
Author(s):  
Hasnat A Amin ◽  
Fotios Drenos

BackgroundUpper respiratory tract infections are reportedly more frequent and more severe in individuals with lower vitamin D levels. Based on these findings, it has been suggested that vitamin D can prevent or reduce the severity of COVID-19.MethodsWe used two-sample Mendelian randomisation (MR) to assess the causal effect of vitamin D levels on SARS-CoV-2 infection risk and COVID-19 severity using publicly available data. We also carried out a genome-wide association analysis (GWA) of vitamin D deficiency in the UK Biobank (UKB) and used these results and two-sample MR to assess the causal effect of vitamin D deficiency on SARS-CoV-2 infection risk and COVID-19 severity.ResultsWe found no evidence that vitamin D levels causally affect the risk of SARS-CoV-2 infection (ln(OR)=0.17 (95% CI −0.22 to 0.57, p=0.39)) nor did we find evidence that vitamin D levels causally affect COVID-19 severity (ln(OR)=0.36 (95% CI −0.89 to 1.61, p=0.57)). Based on our GWA analysis, we found that 17 independent variants are associated with vitamin D deficiency in the UKB. Using these variants as instruments for our two-sample MR analyses, we found no evidence that vitamin D deficiency causally affects the risk of SARS-CoV-2 infection (ln(OR)=−0.04 (95% CI −0.1 to 0.03, p=0.25)) nor did we find evidence that vitamin D deficiency causally affects COVID-19 severity (ln(OR)=−0.24 (95% CI −0.55 to 0.08, p=0.14)).ConclusionsIn conclusion, we found no evidence that vitamin D is protective against SARS-CoV-2 infection or COVID-19 severity. Our data support the recent statement by the National Institute for Health and Care Excellence that the use of vitamin D supplementation to mitigate COVID-19 is not supported by the available data.


2020 ◽  
Vol 83 (6) ◽  
pp. AB49
Author(s):  
Fiatsogbe S. Dzuali ◽  
Connie Zhong ◽  
Joe K. Tung ◽  
Ernesto Gonzalez-Martinez ◽  
Sotonye Imadojemu ◽  
...  
Keyword(s):  

2019 ◽  
Vol 110 (3) ◽  
Author(s):  
Karan Malhotra ◽  
Paul J. Baggott ◽  
Julian Livingstone

Background Vitamin D is an essential vitamin that targets several tissues and organs and plays an important role in calcium homeostasis. Vitamin D deficiency is common, particularly at higher latitudes, where there is reduced exposure to ultraviolet B radiation. We reviewed the role of vitamin D and its deficiency in foot and ankle pathology. Methods The effects of vitamin D deficiency have been extensively studied, but only a small portion of the literature has focused on the foot and ankle. Most evidence regarding the foot and ankle consists of retrospective studies, which cannot determine whether vitamin D deficiency is, in fact, the cause of the pathologies being investigated. Results The available evidence suggests that insufficient vitamin D levels may result in an increased incidence of foot and ankle fractures. The effects of vitamin D deficiency on fracture healing, bone marrow edema syndrome, osteochondral lesions of the talus, strength around the foot and ankle, tendon disorders, elective foot and ankle surgery, and other foot and ankle conditions are less clear. Conclusions Based on the available evidence, we cannot recommend routine testing or supplementation of vitamin D in patients with foot and ankle pathology. However, supplementation is cheap, safe, and may be of benefit in patients at high risk for deficiency. When vitamin D is supplemented, the evidence suggests that calcium should be co-supplemented. Further high-quality research is needed into the effect of vitamin D in the foot and ankle. Cost-benefit analyses of routine testing and supplementation of vitamin D for foot and ankle pathology are also required.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Seyed Aidin Sajedi ◽  
Fahimeh Abdollahi

Background. Insufficient received ultraviolet B radiation (UV) is regarded as the main environmental risk factor (RF) for MS in vitamin D deficiency hypothesis. Nevertheless, geomagnetic disturbance (GMD) has also been proposed as a potential trigger for MS in GMD hypothesis. The aim of this study was to investigate which of these mentioned RF is correlated with long-term ultradecadal MS incidence. Methods. After a systematic search, long-term incidence reports of the United Kingdom (UK), Denmark, Tayside County, Nordland County, the Orkney, and Shetland Islands were selected for this retrospective time-series study. Possible lead-lag relationships between MS incidence, GMD, and UV were evaluated by cross-correlation analysis. Results. Significant positive correlations between GMD and MS incidence were seen in Tayside County (at lag of 2 years: rS = 0.38), Denmark (peak correlation at lag of 2 years: rS = 0.53), and UK (at lag of 1 year: rS = 0.50). We found a positive correlation between received UV and MS incidences in the Nordland at lag of 1 year (rS = 0.49). Conclusion. This study found significant positive correlations between alterations in GMD with alterations in long-term MS incidence in three out of six studied locations and supports the GMD hypothesis. The observed significant correlation between MS and UV is positive; hence it is not supportive for UV related vitamin D deficiency hypothesis.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1838 ◽  
Author(s):  
Maša Hribar ◽  
Hristo Hristov ◽  
Matej Gregorič ◽  
Urška Blaznik ◽  
Katja Zaletel ◽  
...  

Several studies conducted around the world showed substantial vitamin D insufficiency and deficiency among different population groups. Sources of vitamin D in the human body include ultraviolet B (UVB)-light-induced biosynthesis and dietary intake, but people’s diets are often poor in vitamin D. Furthermore, in many regions, sun exposure and the intensity of UVB irradiation during wintertime are not sufficient for vitamin D biosynthesis. In Slovenia, epidemiological data about vitamin D status in the population were investigated through a national Nutrihealth study—an extension to the national dietary survey SI.Menu (2017/18). The study was conducted on a representative sample of 125 adult (18–64 years) and 155 elderly (65–74 years old) subjects, enrolled in the study in different seasons. Their vitamin D status was determined by measuring the serum 25-hydroxy-vitamin D (25(OH)D) concentration. Thresholds for vitamin D deficiency and insufficiency were 25(OH)D levels below 30 and 50 nmol/L, respectively. Altogether, 24.9% of the adults and 23.5% of the elderly were found to be vitamin D deficient, while an insufficient status was found in 58.2% and 62.9%, respectively. A particularly concerning situation was observed during extended wintertime (November–April); vitamin D deficiency was found in 40.8% and 34.6%, and insufficient serum 25(OH)D levels were observed in 81.6% and 78.8%, respectively. The results of the study showed high seasonal variation in serum 25(OH)D levels in both the adult and elderly population, with deficiency being especially pronounced during wintertime. The prevalence of this deficiency in Slovenia is among the highest in Europe and poses a possible public health risk that needs to be addressed with appropriate recommendations and/or policy interventions.


2017 ◽  
Vol 117 (7) ◽  
pp. 1052-1054 ◽  
Author(s):  
Lalani L. Munasinghe ◽  
Yan Yuan ◽  
Noreen D. Willows ◽  
Erin L. Faught ◽  
John P. Ekwaru ◽  
...  

2020 ◽  
Author(s):  
Vidya Lakshmi Purushothaman ◽  
Raphael E Cuomo ◽  
Cedric F Garland ◽  
Tim Ken Mackey

Abstract Background: Vitamin D has been identified as a potential protective factor the development of colorectal cancer (CRC). We expect to see a stronger association of ultraviolet B (UVB) exposure and CRC crude rates with increasing age since chronic vitamin D deficiency leads to sustained molecular changes that increase cancer risk. The DINOMIT (disjunction, initiation, natural selection, overgrowth, metastasis, involution, and transition) model postulates various stages of cancer development due to vitamin D deficiency and the associated latency period. The purpose of this study is to examine this age-dependent inverse relationship globally.Methods: In this ecological study, a series of linear and polynomial regression tests were performed between country specific UVB estimates adjusted for cloud cover and crude incidence rates of CRC for different age groups. Multiple linear regression was used to investigate the association between crude incidence rates of colorectal cancer and UVB estimate adjusting for urbanization, skin pigmentation, smoking, animal consumption, per capita GDP, and life expectancy. Statistical analysis was followed by geospatial visualization by producing choropleth maps.Results: The inverse relationship between UVB exposure and CRC crude rates was stronger in older age groups at the country level. Quadratic curve fitting was preferred, and these models were statistically significant for all age groups. The inverse association between crude incidence rates of CRC and UVB exposure was statistically significant for age groups above 45 years, after controlling for covariates.Conclusion: The age-dependent inverse association between UVB exposure and incidence of colorectal cancer exhibits a greater effect size among older age groups in global analyses. Studying the effect of chronic vitamin D deficiency on colorectal cancer etiology will help in understanding the necessity for population wide screening programs for vitamin D deficiency, especially in regions with inadequate UVB exposure. Further studies are required to assess the need for adequate public health programs such as selective supplementation and food fortification.


Sign in / Sign up

Export Citation Format

Share Document