scholarly journals Association of ACE gene D polymorphism with left ventricular hypertrophy in patients with diastolic heart failure: a case–control study

BMJ Open ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. e010282 ◽  
Author(s):  
Ehsan Bahramali ◽  
Mona Rajabi ◽  
Javad Jamshidi ◽  
Seyyed Mohammad Mousavi ◽  
Mehrdad Zarghami ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bernard Kianu Phanzu ◽  
Aliocha Nkodila Natuhoyila ◽  
Eleuthère Kintoki Vita ◽  
Jean-René M’Buyamba Kabangu ◽  
Benjamin Longo-Mbenza

Abstract Background Conflicting information exists regarding the association between insulin resistance (IR) and left ventricular hypertrophy (LVH). We described the associations between obesity, fasting insulinemia, homeostasis model assessment of insulin resistance (HOMA-IR), and LVH in Black patients with essential hypertension. Methods A case–control study was conducted at the Centre Médical de Kinshasa (CMK), the Democratic Republic of the Congo, between January and December 2019. Cases and controls were hypertensive patients with and without LVH, respectively. The relationships between obesity indices, physical inactivity, glucose metabolism and lipid disorder parameters, and LVH were assessed using linear and logistic regression analyses in simple and univariate exploratory analyses, respectively. When differences were observed between LVH and independent variables, the effects of potential confounders were studied through the use of multiple linear regression and in conditional logistic regression in multivariate analyses. The coefficients of determination (R2), adjusted odds ratios (aORs), and their 95% confidence intervals (95% CIs) were calculated to determine associations between LVH and the independent variables. Results Eighty-eight LVH cases (52 men) were compared against 132 controls (81 men). Variation in left ventricular mass (LVM) could be predicted by the following variables: age (19%), duration of hypertension (31.3%), body mass index (BMI, 44.4%), waist circumference (WC, 42.5%), glycemia (20%), insulinemia (44.8%), and HOMA-IR (43.7%). Hypertension duration, BMI, insulinemia, and HOMA-IR explained 68.3% of LVM variability in the multiple linear regression analysis. In the logistic regression model, obesity increased the risk of LVH by threefold [aOR 2.8; 95% CI (1.06–7.4); p = 0.038], and IR increased the risk of LVH by eightfold [aOR 8.4; 95 (3.7–15.7); p < 0.001]. Conclusion Obesity and IR appear to be the primary predictors of LVH in Black sub-Saharan African hypertensive patients. The comprehensive management of cardiovascular risk factors should be emphasized, with particular attention paid to obesity and IR. A prospective population-based study of Black sub-Saharan individuals that includes the use of serial imaging remains essential to better understand subclinical LV deterioration over time and to confirm the role played by IR in Black sub-Saharan individuals with hypertension.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Richard E. Katholi ◽  
Daniel M. Couri

Left ventricular hypertrophy is a maladaptive response to chronic pressure overload and an important risk factor for atrial fibrillation, diastolic heart failure, systolic heart failure, and sudden death in patients with hypertension. Since not all patients with hypertension develop left ventricular hypertrophy, there are clinical findings that should be kept in mind that may alert the physician to the presence of left ventricular hypertrophy so a more definitive evaluation can be performed using an echocardiogram or cardiovascular magnetic resonance. Controlling arterial pressure, sodium restriction, and weight loss independently facilitate the regression of left ventricular hypertrophy. Choice of antihypertensive agents may be important when treating a patient with hypertensive left ventricular hypertrophy. Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers followed by calcium channel antagonists most rapidly facilitate the regression of left ventricular hypertrophy. With the regression of left ventricular hypertrophy, diastolic function and coronary flow reserve usually improve, and cardiovascular risk decreases.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Adithya T. Mathews ◽  
Abu-Sayeef Mirza ◽  
Chandrashekar Bohra ◽  
Akshay G. Mathews ◽  
Philip Ritucci-Chinni ◽  
...  

Cardiac amyloidosis is a condition when amyloid fibers are deposited in the extracellular space of the heart causing tachyarrhythmias, heart failure, or sudden cardiac death. We present a 71-year-old woman presenting with dyspnea on admission. Echocardiogram revealed diastolic heart failure and left ventricular hypertrophy with strain pattern concerning for an infiltrative process. She was discharged with diuretic therapy and scheduled for a cardiac magnetic resonance imaging. One week after discharge, she was readmitted with progressive shortness of breath and syncope. She was found to be in shock and had multiple episodes of cardiac arrest with both ventricular tachycardia and pulseless electrical activity. She developed electrical storm and eventually passed within 24 hours. Autopsy revealed gross cardiomegaly and left ventricular hypertrophy with Congo red staining revealing amyloid fibrils with apple-green birefringence. This case demonstrates the rapid progression of cardiac amyloidosis from acute-onset diastolic heart failure to uncontrollable ventricular tachycardia, and eventually death. We review the literature regarding multiple diagnostic modalities that facilitate the confirmation of cardiac amyloidosis.


Sign in / Sign up

Export Citation Format

Share Document