Community-dwelling older adults with balance impairment show a moderate increase in fall risk, although further research is required to refine how balance measurement can be used in clinical practice

2010 ◽  
Vol 13 (3) ◽  
pp. 96-97 ◽  
Author(s):  
L. Lundin-Olsson
2010 ◽  
Vol 90 (3) ◽  
pp. 338-347 ◽  
Author(s):  
Susan W. Muir ◽  
Katherine Berg ◽  
Bert Chesworth ◽  
Neil Klar ◽  
Mark Speechley

BackgroundScreening should have simple and easy-to-administer methods that identify impairments associated with future fall risk, but there is a lack of literature supporting validation for their use.ObjectiveThe aim of this study was to evaluate the independent contribution of balance assessment on future fall risk, using 5 methods to quantify balance impairment, for the outcomes “any fall” and “any injurious fall” in community-dwelling older adults who are higher functioning.DesignThis was a prospective cohort study.MethodsA sample of 210 community-dwelling older adults (70% male, 30% female; mean age=79.9 years, SD=4.7) received a comprehensive geriatric assessment at baseline, which included the Berg Balance Scale to measure balance. Information on daily falls was collected for 12 months by each participant's monthly submission of a falls log calendar.ResultsSeventy-eight people (43%) fell, of whom 54 (30%) sustained an injurious fall and 32 (18%) had recurrent falls (≥2 falls). Different balance measurement methods identified different numbers of people as impaired. Adjusted relative risk (RR) estimates for an increased risk of any fall were 1.58 (95% confidence interval [CI]=1.06, 2.35) for self-report of balance problems, 1.58 (95% CI=1.03, 2.41) for one-leg stance, and 1.46 (95% CI=1.02, 2.09) for limits of stability. An adjusted RR estimate for an increased risk of an injurious fall of 1.95 (95% CI=1.15, 3.31) was found for self-report of balance problems.LimitationsThe study was a secondary analysis of data.ConclusionsNot all methods of evaluating balance impairment are associated with falls. The number of people identified as having balance impairment varies with the measurement tool; therefore, the measurement tools are not interchangeable or equivalent in defining an at-risk population. The thresholds established in this study indicate individuals who should receive further comprehensive fall assessment and treatment to prevent falls.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Hide ◽  
Y. Ito ◽  
N. Kuroda ◽  
M. Kanda ◽  
W. Teramoto

AbstractThis study investigates how the multisensory integration in body perception changes with increasing age, and whether it is associated with older adults’ risk of falling. For this, the rubber hand illusion (RHI) and rubber foot illusion (RFI) were used. Twenty-eight community-dwelling older adults and 25 university students were recruited. They viewed a rubber hand or foot that was stimulated in synchrony or asynchrony with their own hidden hand or foot. The illusion was assessed by using a questionnaire, and measuring the proprioceptive drift and latency. The Timed Up and Go Test was used to classify the older adults into lower and higher fall-risk groups. No difference was observed in the RHI between the younger and older adults. However, several differences were observed in the RFI. Specifically, the older adults with a lower fall-risk hardly experienced the illusion, whereas those with a higher fall-risk experienced it with a shorter latency and no weaker than the younger adults. These results suggest that in older adults, the mechanism of multisensory integration for constructing body perception can change depending on the stimulated body parts, and that the risk of falling is associated with multisensory integration.


2018 ◽  
Author(s):  
Yang Yang ◽  
John P Hirdes ◽  
Joel A Dubin ◽  
Joon Lee

BACKGROUND  Little is known about whether off-the-shelf wearable sensor data can contribute to fall risk classification or complement clinical assessment tools such as the Resident Assessment Instrument-Home Care (RAI-HC). OBJECTIVE  This study aimed to (1) investigate the similarities and differences in physical activity (PA), heart rate, and night sleep in a sample of community-dwelling older adults with varying fall histories using a smart wrist-worn device and (2) create and evaluate fall risk classification models based on (i) wearable data, (ii) the RAI-HC, and (iii) the combination of wearable and RAI-HC data. METHODS  A prospective, observational study was conducted among 3 faller groups (G0, G1, G2+) based on the number of previous falls (0, 1, ≥2 falls) in a sample of older community-dwelling adults. Each participant was requested to wear a smart wristband for 7 consecutive days while carrying out day-to-day activities in their normal lives. The wearable and RAI-HC assessment data were analyzed and utilized to create fall risk classification models, with 3 supervised machine learning algorithms: logistic regression, decision tree, and random forest (RF). RESULTS  Of 40 participants aged 65 to 93 years, 16 (40%) had no previous falls, whereas 8 (20%) and 16 (40%) had experienced 1 and multiple (≥2) falls, respectively. Level of PA as measured by average daily steps was significantly different between groups (P=.04). In the 3 faller group classification, RF achieved the best accuracy of 83.8% using both wearable and RAI-HC data, which is 13.5% higher than that of using the RAI-HC data only and 18.9% higher than that of using wearable data exclusively. In discriminating between {G0+G1} and G2+, RF achieved the best area under the receiver operating characteristic curve of 0.894 (overall accuracy of 89.2%) based on wearable and RAI-HC data. Discrimination between G0 and {G1+G2+} did not result in better classification performance than that between {G0+G1} and G2+. CONCLUSIONS  Both wearable data and the RAI-HC assessment can contribute to fall risk classification. All the classification models revealed that RAI-HC outperforms wearable data, and the best performance was achieved with the combination of 2 datasets. Future studies in fall risk assessment should consider using wearable technologies to supplement resident assessment instruments.


2021 ◽  
Vol 37 (3) ◽  
pp. 198-206
Author(s):  
Brenda S. Howard ◽  
Fiona Brown Jones ◽  
Aundrea Sellers Steenblock ◽  
Kiersten Ham Butler ◽  
Ellen Thomas Laub ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 622 ◽  
Author(s):  
Thomas Gerhardy ◽  
Katharina Gordt ◽  
Carl-Philipp Jansen ◽  
Michael Schwenk

Background: Decreasing performance of the sensory systems’ for balance control, including the visual, somatosensory and vestibular system, is associated with increased fall risk in older adults. A smartphone-based version of the Timed Up-and-Go (mTUG) may allow screening sensory balance impairments through mTUG subphases. The association between mTUG subphases and sensory system performance is examined. Methods: Functional mobility of forty-one community-dwelling older adults (>55 years) was measured using a validated mTUG. Duration of mTUG and its subphases ‘sit-to-walk’, ‘walking’, ‘turning’, ‘turn-to-sit’ and ‘sit-down’ were extracted. Sensory systems’ performance was quantified by validated posturography during standing (30 s) under different conditions. Visual, somatosensory and vestibular control ratios (CR) were calculated from posturography and correlated with mTUG subphases. Results: Vestibular CR correlated with mTUG total time (r = 0.54; p < 0.01), subphases ‘walking’ (r = 0.56; p < 0.01), and ‘turning’ (r = 0.43; p = 0.01). Somatosensory CR correlated with mTUG total time (r = 0.52; p = 0.01), subphases ‘walking’ (r = 0.52; p < 0.01) and ‘turning’ (r = 0.44; p < 0.01). Conclusions: Supporting the proposed approach, results indicate an association between specific mTUG subphases and sensory system performance. mTUG subphases ‘walking’ and ‘turning’ may allow screening for sensory system deterioration. This is a first step towards an objective, detailed and expeditious balance control assessment, however needing validation in a larger study.


Author(s):  
Hazel Williams-Roberts ◽  
Catherine Arnold ◽  
Daphne Kemp ◽  
Alexander Crizzle ◽  
Shanthi Johnson

ABSTRACT Given the rising numbers of older adults in Canada experiencing falls, evidence-based identification of fall risks and plans for prevention across the continuum of care is a significant priority for health care providers. A scoping review was conducted to synthesize published international clinical practice guidelines (CPGs) and recommendations for fall risk screening and assessment in older adults (defined as 65 years of age and older). Of the 22 CPGs, 6 pertained to multiple settings, 9 pertained to community-dwelling older adults only, 2 each pertained to acute care and long-term care settings only, and 3 did not specify setting. Two criteria, prior fall history and gait and balance abnormalities, were applied either independently or sequentially in 19 CPG fall risk screening algorithms. Fall risk assessment components were more varied across CPGs but commonly included: detailed fall history; detailed evaluation of gait, balance, and/or mobility; medication review; vision; and environmental hazards assessment. Despite these similarities, more work is needed to streamline assessment approaches for heterogeneous and complex older adult populations across the care continuum. Support is also needed for sustainable implementation of CPGs in order to improve health outcomes.


Sign in / Sign up

Export Citation Format

Share Document