Isocitrate dehydrogenase mutations in diffuse gliomas: clinical and aetiological implications

2011 ◽  
Vol 64 (10) ◽  
pp. 835-844 ◽  
Author(s):  
R Gupta ◽  
R Webb-Myers ◽  
S Flanagan ◽  
M E Buckland

The discovery of isocitrate dehydrogenase (IDH) mutations in gliomas is one example of the large impact that next-generation sequencing is having on the understanding of tumour biology and human disease in general. IDH mutations are early and common events in the development of astrocytomas, oligodendrogliomas and oligoastrocytomas. IDH mutations are also found in some myeloid malignancies and soft tissue tumours, but are rare in other malignancies. IDH mutation detection can be incorporated into routine pathology practice via immunohistochemistry and/or standard sequencing techniques and has great diagnostic value. An emerging theme is that IDH mutation status in gliomas is of great prognostic relevance, and there are proposals to include IDH mutation status in the next iteration of the WHO classification of gliomas. The mechanisms of action(s) of mutant IDH are not fully understood, but the understanding is progressing rapidly, and may provide a mechanism to link diverse proneoplastic processes such as oxidative damage and epigenetic dysregulation. There are exciting prospects of novel therapies for glioma patients emerging from the elucidation of these mechanisms. Given the diagnostic and prognostic implications of IDH mutation, and the potential for new therapies, all gliomas should be assessed for IDH mutation status in the future.

2011 ◽  
Vol 167 (10) ◽  
pp. 683-690 ◽  
Author(s):  
D. Figarella-Branger ◽  
A. Maues de Paula ◽  
C. Colin ◽  
C. Bouvier

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Djuno I van Lent ◽  
Kirsten M van Baarsen ◽  
Tom J Snijders ◽  
Pierre A J T Robe

Abstract Background Isocitrate dehydrogenase (IDH) mutation and 1p/19q-codeletion are oncogenetic alterations with a positive prognostic value for diffuse gliomas, especially grade II and III. Some studies have suggested differences in biological behavior as reflected by radiological characteristics. In this paper, the literature regarding radiological characteristics in grade II and III glioma subtypes was systematically evaluated and a meta-analysis was performed. Methods Studies that addressed the relationship between conventional radiological characteristics and IDH mutations and/or 1p/19q-codeletions in newly diagnosed, grade II and III gliomas of adult patients were included. The “3-group analysis” compared radiological characteristics between the WHO 2016 glioma subtypes (IDH-mutant astrocytoma, IDH-wildtype astrocytoma, and oligodendroglioma), and the “2-group analysis” compared radiological characteristics between 1p/19q-codeleted gliomas and 1p/19q-intact gliomas. Results Fourteen studies (3-group analysis: 670 cases, 2-group analysis: 1042 cases) were included. IDH-mutated astrocytomas showed more often sharp borders and less frequently contrast enhancement compared to IDH-wildtype astrocytomas. 1p/19q-codeleted gliomas had less frequently sharp borders, but showed a heterogeneous aspect, calcification, cysts, and edema more frequently. For the 1p/19q-codeleted gliomas, a sensitivity of 96% was found for heterogeneity and a specificity of 88.1% for calcification. Conclusions Significant differences in conventional radiological characteristics exist between the WHO 2016 glioma subtypes, which may reflect differences in biological behavior. However, the diagnostic value of the independent radiological characteristics is insufficient to reliably predict the molecular genetic subtype.


2018 ◽  
Vol 07 (02) ◽  
pp. 129-134
Author(s):  
Shameen Devi ◽  
Michelle De Padua ◽  
Iravathy Kalal

Abstract Introduction The updated 2016 classification of gliomas incorporates well-established molecular parameters into the classification of diffuse gliomas, taking into account isocitrate dehydrogenase 1 (IDH1) mutation, α-thalassemia/mental retardation syndrome X-linked (ATRX) loss, and 1p/19q co-deletion. Aim and Objectives To study IDH1 and ATRX mutations in gliomas, 1p/19q co-deletion by fluorescent in situ hybridization (FISH) in oligodendroglioma, and to correlate IDH1, ATRX, and 1p/19q with tumor type and grade. Material and Methods Total 73 cases of gliomas were diagnosed on histology and graded as astrocytoma (grades 2–4), oligodendroglioma (grades 2–3), and oligoastrocytoma (grades 2–3) by two pathologists independently. IDH mutation and ATRX expression were analyzed using immunohistochemistry in all cases whereas 1p/19q co-deletion was studied using FISH in cases with oligodendroglioma and oligoastrocytoma morphology. Results Total 48 cases of astrocytoma, 9 cases of oligoastrocytoma, and 16 cases of oligodendroglioma were included. The maximum number of IDH1 mutation cases were seen in diffuse astrocytoma (7/10; 70%) as compared with anaplastic astrocytoma (5/15; 33.33%), glioblastoma multiforme (GBM) (3/23; 13.04%) grade II oligoastrocytoma (3/6; 50%), anaplastic oligoastrocytoma (2/3; 66.67%), and oligodendroglioma grade II (7/10; 70%). ATRX loss was seen in diffuse astrocytoma grade II (6/10; 60%), anaplastic astrocytoma (6/15; 40%), oligoastrocytoma grade II (2/6; 33.33%), and anaplastic oligoastrocytoma (1/3; 33.33%). 1p/19q co-deletion was seen in oligoastrocytoma (2/2; 100%), anaplastic oligoastrocytoma (1/2; 50%), oligodendroglioma (3/4; 75%), and anaplastic oligodendroglioma (1/3; 33.33%). Six of the seven cases with 1p/19q co-deletion also showed IDH1 mutation. One of seven 1p/19q co-deleted cases had loss of expression of ATRX. Conclusion Incorporation of IDH1 mutation, ATRX loss, and 1p/19q co-deletion molecular studies help in a more accurate diagnosis and classification of gliomas.


2018 ◽  
Vol 128 (2) ◽  
pp. 391-398 ◽  
Author(s):  
Anna Tietze ◽  
Changho Choi ◽  
Bruce Mickey ◽  
Elizabeth A. Maher ◽  
Benedicte Parm Ulhøi ◽  
...  

OBJECTIVEMutations in the isocitrate dehydrogenase (IDH) genes are of proven diagnostic and prognostic significance for cerebral gliomas. The objective of this study was to evaluate the clinical feasibility of using a recently described method for determining IDH mutation status by using magnetic resonance spectroscopy (MRS) to detect the presence of 2-hydroxyglutarate (2HG), the metabolic product of the mutant IDH enzyme.METHODSBy extending imaging time by 6 minutes, the authors were able to include a point-resolved spectroscopy (PRESS) MRS sequence in their routine glioma imaging protocol. In 30 of 35 patients for whom this revised protocol was used the lesions were subsequently diagnosed histologically as gliomas. Of the remaining 5 patients, 1 had a gangliocytoma, 1 had a primary CNS lymphoma, and 3 had nonneoplastic lesions. Immunohistochemistry and/or polymerase chain reaction were used to detect the presence of IDH mutations in the glioma tissue resected.RESULTSIn vivo MRS for 2HG correctly identified the IDH mutational status in 88.6% of patients. The sensitivity and specificity was 89.5% and 81.3%, respectively, when using 2 mM 2HG as threshold to discriminate IDH-mutated from wildtype tumors. Two glioblastomas that had elevated 2HG levels did not have detectable IDH mutations, and in 2 IDH-mutated gliomas 2HG was not reliably detectable.CONCLUSIONSThe noninvasive determination of the IDH mutation status of a presumed glioma by means of MRS may be incorporated into a routine diagnostic imaging protocol and can be used to obtain additional information for patient care.


2019 ◽  
Vol 20 (S19) ◽  
Author(s):  
Sean Chun-Chang Chen ◽  
Chung-Ming Lo ◽  
Shih-Hua Wang ◽  
Emily Chia-Yu Su

Abstract Background Accurate classification of diffuse gliomas, the most common tumors of the central nervous system in adults, is important for appropriate treatment. However, detection of isocitrate dehydrogenase (IDH) mutation and chromosome1p/19q codeletion, biomarkers to classify gliomas, is time- and cost-intensive and diagnostic discordance remains an issue. Adenosine to inosine (A-to-I) RNA editing has emerged as a novel cancer prognostic marker, but its value for glioma classification remains largely unexplored. We aim to (1) unravel the relationship between RNA editing and IDH mutation and 1p/19q codeletion and (2) predict IDH mutation and 1p/19q codeletion status using machine learning algorithms. Results By characterizing genome-wide A-to-I RNA editing signatures of 638 gliomas, we found that tumors without IDH mutation exhibited higher total editing level compared with those carrying it (Kolmogorov-Smirnov test, p < 0.0001). When tumor grade was considered, however, only grade IV tumors without IDH mutation exhibited higher total editing level. According to 10-fold cross-validation, support vector machines (SVM) outperformed random forest and AdaBoost (DeLong test, p < 0.05). The area under the receiver operating characteristic curve (AUC) of SVM in predicting IDH mutation and 1p/19q codeletion were 0.989 and 0.990, respectively. After performing feature selection, AUCs of SVM and AdaBoost in predicting IDH mutation were higher than that of random forest (0.985 and 0.983 vs. 0.977; DeLong test, p < 0.05), but AUCs of the three algorithms in predicting 1p/19q codeletion were similar (0.976–0.982). Furthermore, 67% of the six continuously misclassified samples by our 1p/19q codeletion prediction models were misclassifications in the original labelling after inspection of 1p/19q status and/or pathology report, highlighting the accuracy and clinical utility of our models. Conclusions The study represents the first genome-wide analysis of glioma editome and identifies RNA editing as a novel prognostic biomarker for glioma. Our prediction models provide standardized, accurate, reproducible and objective classification of gliomas. Our models are not only useful in clinical decision-making, but also able to identify editing events that have the potential to serve as biomarkers and therapeutic targets in glioma management and treatment.


2021 ◽  
Author(s):  
Kanwalpreet Kaur

In 2016 WHO classification of CNS tumors genotypic and phenotypic parameters were integrated to define a new nomenclature of diffuse gliomas on the basis of presence or absence of isocitrate dehydrogenase mutations. This resulted in more homogenous and narrowly defined categories with better accuracy of prognostic information, thus, playing a crucial role in patient management. Broadly, astrocytomas are now histologically and genetically distinct with IDH-mutant, ATRX-mutant, 1p/19q-intact and oligodendroglial tumors has IDH-mutant, ATRX-wildtype and 1p/19q-codeleted profile. Glioblastoma are now classified into primary and secondary on the basis of IDH mutations independent of clinical history.


Author(s):  
Gerald Fine ◽  
Azorides R. Morales

For years the separation of carcinoma and sarcoma and the subclassification of sarcomas has been based on the appearance of the tumor cells and their microscopic growth pattern and information derived from certain histochemical and special stains. Although this method of study has produced good agreement among pathologists in the separation of carcinoma from sarcoma, it has given less uniform results in the subclassification of sarcomas. There remain examples of neoplasms of different histogenesis, the classification of which is questionable because of similar cytologic and growth patterns at the light microscopic level; i.e. amelanotic melanoma versus carcinoma and occasionally sarcoma, sarcomas with an epithelial pattern of growth simulating carcinoma, histologically similar mesenchymal tumors of different histogenesis (histiocytoma versus rhabdomyosarcoma, lytic osteogenic sarcoma versus rhabdomyosarcoma), and myxomatous mesenchymal tumors of diverse histogenesis (myxoid rhabdo and liposarcomas, cardiac myxoma, myxoid neurofibroma, etc.)


2020 ◽  
Vol 132 (1) ◽  
pp. 180-187 ◽  
Author(s):  
Clint M. Alfaro ◽  
Valentina Pirro ◽  
Michael F. Keating ◽  
Eyas M. Hattab ◽  
R. Graham Cooks ◽  
...  

OBJECTIVEThe authors describe a rapid intraoperative ambient ionization mass spectrometry (MS) method for determining isocitrate dehydrogenase (IDH) mutation status from glioma tissue biopsies. This method offers new glioma management options and may impact extent of resection goals. Assessment of the IDH mutation is key for accurate glioma diagnosis, particularly for differentiating diffuse glioma from other neoplastic and reactive inflammatory conditions, a challenge for the standard intraoperative diagnostic consultation that relies solely on morphology.METHODSBanked glioma specimens (n = 37) were analyzed by desorption electrospray ionization–MS (DESI-MS) to develop a diagnostic method to detect the known altered oncometabolite in IDH-mutant gliomas, 2-hydroxyglutarate (2HG). The method was used intraoperatively to analyze tissue smears obtained from glioma patients undergoing resection and to rapidly diagnose IDH mutation status (< 5 minutes). Fifty-one tumor core biopsies from 25 patients (14 wild type [WT] and 11 mutant) were examined and data were analyzed using analysis of variance and receiver operating characteristic curve analysis.RESULTSThe optimized DESI-MS method discriminated between IDH-WT and IDH-mutant gliomas, with an average sensitivity and specificity of 100%. The average normalized DESI-MS 2HG signal was an order of magnitude higher in IDH-mutant glioma than in IDH-WT glioma. The DESI 2HG signal intensities correlated with independently measured 2HG concentrations (R2 = 0.98). In 1 case, an IDH1 R132H–mutant glioma was misdiagnosed as a demyelinating condition by frozen section histology during the intraoperative consultation, and no resection was performed pending the final pathology report. A second craniotomy and tumor resection was performed after the final pathology provided a diagnosis most consistent with an IDH-mutant glioblastoma. During the second craniotomy, high levels of 2HG in the tumor core biopsies were detected.CONCLUSIONSThis study demonstrates the capability to differentiate rapidly between IDH-mutant gliomas and IDH-WT conditions by DESI-MS during tumor resection. DESI-MS analysis of tissue smears is simple and can be easily integrated into the standard intraoperative pathology consultation. This approach may aid in solving differential diagnosis problems associated with low-grade gliomas and could influence intraoperative decisions regarding extent of resection, ultimately improving patient outcome. Research is ongoing to expand the patient cohort, systematically validate the DESI-MS method, and investigate the relationships between 2HG and tumor heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document