Detection of chromosomal changes in chronic lymphocytic leukemia using classical cytogenetic methods and FISH: application of rich mitogen mixtures for lymphocyte cultures

2016 ◽  
Vol 64 (4) ◽  
pp. 894-898 ◽  
Author(s):  
Dorota Koczkodaj ◽  
Sylwia Popek ◽  
Szymon Zmorzyński ◽  
Ewa Wąsik-Szczepanek ◽  
Agata A Filip

One of the research methods of prognostic value in chronic lymphocytic leukemia (CLL) is cytogenetic analysis. This method requires the presence of appropriate B-cell mitogens in cultures in order to obtain a high mitotic index. The aim of our research was to determine the most effective methods of in vitro B-cell stimulation to maximize the number of metaphases from peripheral blood cells of patients with CLL for classical cytogenetic examination, and then to correlate the results with those obtained using fluorescence in situ hybridization (FISH). The study group involved 50 consecutive patients with CLL. Cell cultures were maintained with the basic composition of culture medium and addition of respective stimulators. We used the following stimulators: Pokeweed Mitogen (PWM), 12-O-tetradecanoylphorbol 13-acetate (TPA), ionophore, lipopolysaccharide (LPS), and CpG-oligonucleotide DSP30. We received the highest mitotic index when using the mixture of PWM+TPA+I+DSP30. With classical cytogenetic tests using banding techniques, numerical and structural aberrations of chromosomes were detected in 46 patients, and no change was found in only four patients. Test results clearly confirmed the legitimacy of using cell cultures enriched with the mixture of cell stimulators and combining classical cytogenetic techniques with the FISH technique in later patient diagnosing.

Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4389-4395 ◽  
Author(s):  
Freda K. Stevenson ◽  
Federico Caligaris-Cappio

Abstract The finding that chronic lymphocytic leukemia (CLL) consists of 2 clinical subsets, distinguished by the incidence of somatic mutations in the immunoglobulin (Ig) variable region (V) genes, has clearly linked prognosis to biology. Antigen encounter by the cell of origin is indicated in both subsets by selective but distinct expression of V genes, with evidence for continuing stimulation after transformation. The key to distinctive tumor behavior likely relates to the differential ability of the B-cell receptor (BCR) to respond. Both subsets may be undergoing low-level signaling in vivo, although analysis of blood cells limits knowledge of critical events in the tissue microenvironment. Analysis of signal competence in vitro reveals that unmutated CLL generally continues to respond, whereas mutated CLL is anergized. Differential responsiveness may reflect the increased ability of post-germinal center B cells to be triggered by antigen, leading to long-term anergy. This could minimize cell division in mutated CLL and account for prognostic differences. Unifying features of CLL include low responsiveness, expression of CD25, and production of immunosuppressive cytokines. These properties are reminiscent of regulatory T cells and suggest that the cell of origin of CLL might be a regulatory B cell. Continuing regulatory activity, mediated via autoantigen, could suppress Ig production and lead to disease-associated hypogammaglobulinemia. (Blood. 2004;103:4389-4395)


2010 ◽  
Vol 67 (10) ◽  
pp. 864-866 ◽  
Author(s):  
Darko Antic ◽  
Marija Dencic-Fekete ◽  
Dragica Tomin ◽  
Irena Djunic

Background. We described a patient with chronic lymphocytic leukemia (CLL) and lung cancer and unusual chromosomal aberrations. Case report. At the same time with the diagnosis of B-cell CLL, squamocellular lung carcinoma diagnosis was established. Using interphase fluoresecence in situ hybridization technique (FISH) we detected monosomy 12 and deletion of 13q34 occured in the same clone. One month after the beginning of examination the patient died unexpectedly during sleep immediately before we applied a specific treatment for CLL or lung carcinoma. Conclusion. Simultaneous occurrence of monosomy 12 and deletion of 13q34 in a patient with B-cell CLL has been described only once before, but as a part of a complex karyotype. The prognostic significance of these abnormalities remains uncertain.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


2005 ◽  
Vol 129 (3) ◽  
pp. 410-411
Author(s):  
Wolfgang Kern ◽  
Torsten Haferlach ◽  
Susanne Schnittger ◽  
Claudia Schoch

Abstract Cytomorphologic testing and multiparameter flow cytometry are the mainstays in diagnosing B-cell chronic lymphocytic leukemia, whereas fluorescence in situ hybridization that targets the translocation t(14;18)(q32;q21) often is used to identify follicular lymphoma. Therapy is highly diverse between both diseases. We describe a case with cytomorphologically and immunologically proven B-cell chronic lymphocytic leukemia in which t(14;18)(q32;q21) was found.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2973-2979 ◽  
Author(s):  
Anne J. Novak ◽  
Richard J. Bram ◽  
Neil E. Kay ◽  
Diane F. Jelinek

B-cell chronic lymphocytic leukemia (B-CLL) is defined by the accumulation of CD5+ B cells in the periphery and bone marrow. This disease is not characterized by highly proliferative cells but rather by the presence of leukemic cells with significant resistance to apoptosis and, therefore, prolonged survival. B-lymphocyte stimulator (BLyS) is a newly identified tumor necrosis factor (TNF) family member shown to be critical for maintenance of normal B-cell development and homeostasis and it shares significant homology with another TNF superfamily member, APRIL. The striking effects of BLyS on normal B-cell maintenance and survival raises the possibility that it may be involved in pathogenesis and maintenance of hematologic malignancies, including B-CLL. In this study, we investigated the status of APRIL and BLyS expression, as well as their receptors, in this disease. All B-CLL patient cells studied expressed one or more of 3 known receptors for BLyS; however, the pattern of expression was variable. In addition, we demonstrate for the first time that B-CLL cells from a subset of patients aberrantly express BLyS and APRIL mRNA, whereas these molecules were not detectable in normal B cells. Furthermore, we provide in vitro evidence that BLyS protects B-CLL cells from apoptosis and enhances cell survival. Because these molecules are key regulators of B-cell homeostasis and tumor progression, leukemic cell autocrine expression of BLyS and APRIL may be playing an important role in the pathogenesis of this disease.


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Jan A. Burger

Abstract Intrinsic factors such as genetic lesions, anti-apoptotic proteins, and aberrant signaling networks within leukemia cells have long been the main focus of chronic lymphocytic leukemia (CLL) research. However, over the past decade, it became increasingly clear that external signals from the leukemia microenvironment make pivotal contributions to disease progression in CLL and other B-cell malignancies. Consequently, increasing emphasis is now placed on exploring and targeting the CLL microenvironment. This review highlights critical cellular and molecular pathways of CLL-microenvironment cross-talk. In vitro and in vivo models for studying the CLL microenvironment are discussed, along with their use in searching for therapeutic targets and in drug testing. Clinically, CXCR4 antagonists and small-molecule antagonists of B cell receptor (BCR)-associated kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], and PI3Kδ) are the most advanced drugs for targeting specific interactions between CLL cells and the miocroenvironment. Preclinical and first clinical evidence suggests that high-risk CLL patients can particularly benefit from these alternative agents. These findings indicate that interplay between leukemia-inherent and environmental factors, nature and nurture determines disease progression in CLL.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1667-1673 ◽  
Author(s):  
I Touw ◽  
L Dorssers ◽  
B Lowenberg

Abstract To determine the growth properties of B cell chronic lymphocytic leukemia (B CLL) and to identify possible abnormalities thereof, we examined the in vitro action of interleukin 2 (IL2) in four patients. Using radiolabeled IL2 and monoclonal antibodies reactive with IL2 membrane receptors we show that CLL cells, after their activation in vitro, express IL2 receptors of a high- as well as a low-affinity type, exactly as has been reported for normal T and B blasts. In three of the four reported cases, CLL proliferation (measured with 3H-thymidine incorporation) depended on the addition of phytohemagglutinin (PHA) to activate the cells and IL2 (optimal concentration, 10 to 100 U IL2/mL). In contrast, the cells of the fourth case of CLL (CLL-4) proliferated in an autonomous fashion, ie, without a need for PHA and IL2 in culture. Specific blocking of the IL2-binding sites with anti-IL2 receptor monoclonal antibodies almost completely inhibited the proliferation of these cells, which indicated that functional IL2 receptors were required for the autonomous proliferation. The demonstration of low concentrations of IL2 activity in the culture medium conditioned by the cells suggests that endogenous IL2 had been responsible for the spontaneous 3H-thymidine uptake by the CLL cells of patient 4. However, we were unable to extract IL2 mRNA from the cells (neither fresh nor after various in vitro incubations) in quantities detectable by Northern blot analysis that would prove that the CLL cells of patient 4 were actively synthesizing IL2 during culture. Thus, individual cases of B CLL are subject to variable growth regulation involving functional IL2 receptors on the cell surface: after activation with PHA the cells respond to exogenous IL2 in a fashion similar to normal B lymphocytes, or the cells are stimulated by endogenous IL2 (or an IL2-like activity) and do not require activation with PHA.


Sign in / Sign up

Export Citation Format

Share Document