scholarly journals Biomechanics and physical examination of the posteromedial and posterolateral knee: state of the art

Author(s):  
Steven T Swinford ◽  
Robert LaPrade ◽  
Lars Engebretsen ◽  
Moises Cohen ◽  
Marc Safran

The posteromedial and posterolateral corner structures contribute significantly to knee stability. The posterior oblique ligament is a primary restraint to internal rotation and a secondary restraint to valgus. The superficial fibres of the medial collateral ligament are the primary valgus restraint and also provide secondary internal and external rotation stability. The deep fibres of the medial collateral provide additional restraint to internal and external rotation as well as valgus. The posteromedial capsule provides a secondary restraint to valgus and posterior translation. The lateral (fibular) collateral ligament is the primary varus stabiliser. The popliteus tendon complex is a primary restraint to external rotation. The popliteofibular ligament is a secondary restraint to external rotation and varus. Many physical examination manoeuvres have been described to assess these structures. Manoeuvres assessing the posterolateral structures include the varus stress test, dial test, the posterolateral drawer, the external rotation recurvatum test, heel height test and the reverse pivot shift. Examination manoeuvres that assess the posteromedial structures include the valgus stress test, dial test, anterolateral drawer test and anteromedial drawer test. Proper application of physical examination manoeuvres in conjunction with other diagnostic modalities will allow providers to develop appropriate treatment plans.

2005 ◽  
Vol 33 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Shawn W. M. O'Driscoll ◽  
Richard L. Lawton ◽  
Adam M. Smith

Background The diagnosis of a painful partial tear of the medial collateral ligament in overhead-throwing athletes is challenging, even for experienced elbow surgeons and despite the use of sophisticated imaging techniques. Hypothesis The “moving valgus stress test” is an accurate physical examination technique for diagnosis of medial collateral ligament attenuation in the elbow. Study Design Cohort study (diagnosis); Level of evidence, 2. Methods Twenty-one patients underwent surgical intervention for medial elbow pain due to medial collateral ligament insufficiency or other abnormality of chronic valgus overload, and they were assessed preoperatively with an examination called the moving valgus stress test. To perform the moving valgus stress test, the examiner applies and maintains a constant moderate valgus torque to the fully flexed elbow and then quickly extends the elbow. The test is positive if the medial elbow pain is reproduced at the medial collateral ligament and is at maximum between 120 ° and 70 °. Results The moving valgus stress test was highly sensitive (100%, 17 of 17 patients) and specific (75%, 3 of 4 patients) when compared to assessment of the medial collateral ligament by surgical exploration or arthroscopic valgus stress testing. The mean shear range (ie, the arc within which pain was produced with the moving valgus stress test) was 120 ° to 70 °. The mean angle at which pain was at a maximum was 90 ° of elbow flexion. Conclusions The moving valgus stress test is an accurate physical examination technique that, when performed and interpreted correctly, is highly sensitive for medial elbow pain arising from the medial collateral ligament.


2020 ◽  
Vol 8 (5_suppl5) ◽  
pp. 2325967120S0009
Author(s):  
Bancha Chernchujit ◽  
Arrisna Artha ◽  
Panin Anilabol

Background: Many aspects of the posterolateral corner (PLC) of the knee have been extensively studied within the past 20 years. Quantitative anatomic and biomechanical studies have demonstrated the importance of the 3 static stabilizers of the lateral side of the knee: the fibular collateral ligament, the popliteus tendon, and the popliteofibular ligament. There are various methods of reconstruction. However, currently, there is no consensus on the preferred reconstruction technique for treating patients with chronic PLC injuries. We have developed a new reconstructive technique for PLC based on tibiofibular-based technique, similar to LaPrade, and this technique is less invasive than the previous techniques. Hypothesis: There is no difference between minimally invasive popliteus and LCL reconstruction and LaPrade’s method in restoring the posterolateral stability of knees Methods: Six paired fresh-frozen cadaveric knees were assessed in the intact state and then dissected to simulate a grade III posterolateral knee injury. By using a “Blocked randomization”, each paired knee was randomized into 2 groups (1) reconstruction via LaPrade’s method, (2) minimally invasive popliteus and LCL reconstruction. Biomechanical testing using varus stress radiographs was performed to compare knee stability between 2 groups. Results: This study included six paired knees, three males and three females. The mean age of the cadaver was 70.8 years (range 57-85 years). No difference was found in the demographic data (sex distribution, lateral opening gap of intact knee and side-to-side difference of lateral opening gap of sectioned knee) between the 2 groups. The side-to-side difference in lateral joint opening on the varus stress radiographs significantly improved after PLC reconstruction in both groups (p <0.001, p <0.001), However, there were no differences between the 2 groups in side-to-side difference of lateral opening gap after reconstruction (Mean difference=-0.05 (95%CI, -0.46 to 0.36); p- value=0.039). Conclusion: Biomechanically, minimally invasive popliteus and LCL reconstruction is equivalent to LaPrade’s technique in restoring the stability of knees in case of grade III PLC injury. Additionally, this technique is less invasive than all traditional open technique of PLC reconstruction. The minimally invasive popliteus and LCL reconstruction technique may be a treatment option for grade III PLC injury. Keywords: posterolateral corner; ligament reconstruction; popliteus tendon; lateral collateral ligament; popliteofibular ligament; knee biomechanics; minimally invasive surgery


2017 ◽  
Vol 5 (3_suppl3) ◽  
pp. 2325967117S0012
Author(s):  
Alexander R. Vap ◽  
Jason M. Schon ◽  
Gilbert Moatshe ◽  
Raphael Cruz ◽  
Alex Brady ◽  
...  

Objectives: The purpose of this study was to assess the effect of sequentially cutting the posterolateral, anterolateral, posteromedial and anteromedial structures of the knee on rotational kinematics in the setting of intact cruciate and collateral ligaments. It was hypothesized that cutting of the iliotibial band (ITB), anterolateral ligament and lateral capsule (ALL/LC), the posterior oblique ligament (POL), and the posteromedial capsule (PMC) would significantly increase internal rotation and that the anteromedial capsule (AMC), and the popliteus tendon and popliteofibular ligament (PLT/PFL) when sectioned would lead to a significant increase in external rotation of the knee. Methods: Ten pairs ( n = 20) of cadaveric knees were assigned to two sequential cutting groups (posterolateral-to-posteromedial and posteromedial-to-posterolateral). Specimen were subjected to 5 N-m of internal and external rotation torque at knee flexion angles 0° through 90° in the intact and after each cut state. Rotational changes were measured and compared to the intact and previous states following each cut. Results: Sectioning of the ITB significantly increased internal rotation at 60° and 90° by 5.4° and 6.2[[Unsupported Character - Codename ­]]°, respectively (after ALL/LC cut) and 3.5° and 3.8° (prior to ALL/LC cut) ( Figure 1 ). At 60° and 90°, section of the ALL/LC produced significant increases in internal rotation of 3.1[[Unsupported Character - Codename ­]]° and 3.5°, respectively (after ITB cut) and of 0.5° (prior to ITB cut) ( Figure 1 ). At 0°, section of the POL produced significant increases in internal rotation of 2.0° (ITB intact) and 1.8° (after ITB cut) ( Figure 1 ). Sectioning the PLT/PFL complex significantly increased external rotation at 60° and 90° by 2.7° and 2.9°, respectively (prior to sectioning medial structures) and 2.2° and 2.7[[Unsupported Character - Codename ­]]°, respectively (after sectioning medial structures) ( Figure 2 ). Sectioning the AMC produced significant increases in external rotation at 30°- 90° of flexion, however the magnitude of change was < 1° ( Figure 2 ). [Figure: see text][Figure: see text] Conclusion: Collectively the anterolateral corner structures had a primary role in internal rotational control of the knee from 60° to 90° of knee flexion. The ITB was the most significant primary stabilizer for internal rotation in ACL intact knees. The POL contributed to internal rotational control at full extension, while the PLT/PFL complex controlled external rotation of the knee at higher flexion angles (60° and 90°). Internal rotation control of the knee has been mainly attributed to the cruciate and collateral ligaments. This study delineates the primary and secondary roles of the ITB, the ALL/LC, POL and PLT/PFL to rotatory stability of the knee. As such, it provides new information about the understanding of rotational instabilities of the knee.


2018 ◽  
Vol 14 (1) ◽  
pp. 37-41
Author(s):  
Laith Saleem Sabri

Background: Tear of MCL of the knee is a frequent problem among knee ligaments injuries.Injuries to the MCL are usually caused by contact on the outside of the knee and are accompanied by sharp pain on the inside of the knee. Contrary to most other knee ligaments the medial collateral ligament (MCL) has an excellent ability to heal, being fairly large and well vascularised structure. The vast majority of isolated medial ligament injuries heal without significant long-term problems Objectives: is to compare between the early clinical examination, and assessment under general anesthesia (GA), and to find out the best methods to assess the MCL tear especially in suspected cases. Type of the study:Cross- sectional study. Methods: Fifty patients are collected from casualty & outpatient units from November/2014 to October/2016 with MCL injury  in AL-Kindy teaching hospital.We decided to evaluate them under general anesthesia by valgus stress test at 30 degrees & 0 degrees to estimate the integrity of MCL, in addition to    anterior &posterior Drawer test to evaluate anterior &posterior cruciate ligaments Results: :  From the 50 patients we select, there were 21 patients seen in the examination to have MCL tear.1 of them were    Grade I ( 4.8% ),14 of them were Grade II (66.7% ),&6 of them were Grade III (28.5%)Associated injuries  with ACL injury  were 5 patients, with  PCL injury    were 1 patient and with medial capsular injury were 2 patients.  Follow up of case range from (2-10) weeks with an average of 6 weeks combined with physiotherapy programs. Conclusions: Diagnosis of MCL tear by valgus stress test under GA  is the best method for the assessment of MCL tear in suspected cases.


2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Ishan Shevate ◽  
Girish Nathani ◽  
Ashwin Deshmukh ◽  
Anirudh Kandari

Introduction: The medial collateral ligament (MCL) is the most commonly injured ligament of the knee joint; however, its displacement into the medial knee compartment is rare. Traumatic posterior root of medial meniscus (PRMM) tears are commonly found in high-grade injuries involving anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) tears along with MCL tears. Diagnosis of these injuries can be made by a preoperative magnetic resonance imaging (MRI), but they can be missed at times due to severe soft-tissue swelling in the acute phase. Case Report: A 25-year-old gentleman presented with injury to the front of his left knee 5 days back. On examination, he had a Grade 3 effusion with valgus stress test and posterior drawer test being positive and medial joint line tenderness was present. A firm localized swelling was palpable on the medial joint line. MRI scan revealed a mid-substance PCL tear, ACL sprain, PRMM tear, and tibial side rupture of superficial MCL with proximally migrated wavy MCL fibers lying below the medial meniscus confirmed on arthroscopy. Medial meniscus root repair by pull through technique and PCL reconstruction with a 3-strand peroneus longus graft followed by open MCL repair with augmentation using a semitendinosus graft was performed. Postoperatively, the knee was kept in a straight knee brace for 4 weeks, followed by a hinged knee brace and appropriate physiotherapy were started. At 2 years follow-up, the patient had attained full range of knee motion with good quadriceps strength, tibial step off maintained, and negative posterior drawer test and valgus stress test. Displacement of torn MCL into the medial knee compartment is an extremely rare injury. Proximal or distal avulsion of MCL with intra-articular incarceration has been reported in isolation or associated with ACL tear. Such an injury triad as reported here has not been reported in the literature to the best of our review. Conclusion: In our case, we report a ver


2017 ◽  
Vol 5 (2_suppl2) ◽  
pp. 2325967117S0007
Author(s):  
Gökay Görmeli ◽  
Cemile Ayşe Görmeli ◽  
Nurzat Elmalı ◽  
Mustafa Karakaplan ◽  
Kadir Ertem ◽  
...  

Introduction: Injuries of the posterolateral corner (PLC) of the knee are rare. They are difficult to diagnose and can cause severe disability. This study presents the 20- to 70-month clinical and radiological outcomes of the anatomical reconstruction technique of LaPrade et al. Materials and methods Twenty-one patients with chronic PLC injuries underwent anatomical PLC reconstruction. The anatomical locations of the popliteus tendon, fibular collateral ligament, and popliteofibular ligament were reconstructed using a 2-graft technique. The patients were evaluated subjectively with the Tegner, Lysholm, and International Knee Documentation Committee (IKDC) subjective knee scores and objectively with the IKDC objective scores; additionally, varus stress radiographs were taken to evaluate knee stability. Results: Significant (p\0.05) improvements were observed in the postoperative Lysholm, IKDC-s, and Tegner scores compared with preoperatively. The IKDC objective subscores (lateral joint opening at 20_______________of knee extension, external rotation at 30_______________and 90_______________, and the reverse pivot-shift test) had improved significantly at the time of the final 40.9 ± 13.7-month follow-up.Lateralcompartment opening on the varus stress radiographs had decreased significantly in the postoperative period. However, there was still a significant difference compared with the uninjured knee. There was no significant improvement in the IKDC-s, Lysholm, or Tegner scores between the nine patients with isolated PLC injuries and twelve with multiligament injuries. Conclusions: Significant improvement in the objective knee stability scores and clinical outcomes with anatomical reconstruction showed that this technique can be used to treat patients with chronic PLC injured knees. However, longer-term multicentre studies and studies with larger groups comparing multiple techniques are required to determine the best treatment method for PLC injuries.


2009 ◽  
Vol 37 (9) ◽  
pp. 1762-1770 ◽  
Author(s):  
Chad J. Griffith ◽  
Robert F. LaPrade ◽  
Steinar Johansen ◽  
Bryan Armitage ◽  
Coen Wijdicks ◽  
...  

Background There is a lack of knowledge on the primary and secondary static stabilizing functions of the posterior oblique ligament (POL), the proximal and distal divisions of the superficial medial collateral ligament (sMCL), and the meniscofemoral and meniscotibial portions of the deep medial collateral ligament (MCL). Hypothesis Identification of the primary and secondary stabilizing functions of the individual components of the main medial knee structures will provide increased knowledge of the medial knee ligamentous stability. Study Design Descriptive laboratory study. Methods Twenty-four cadaveric knees were equally divided into 3 groups with unique sequential sectioning sequences of the POL, sMCL (proximal and distal divisions), and deep MCL (meniscofemoral and meniscotibial portions). A 6 degree of freedom electromagnetic tracking system monitored motion after application of valgus loads (10 N·m) and internal and external rotation torques (5 N·m) at 0°, 20°, 30°, 60°, and 90° of knee flexion. Results The primary valgus stabilizer was the proximal division of the sMCL. The primary external rotation stabilizer was the distal division of the sMCL at 30° of knee flexion. The primary internal rotation stabilizers were the POL and the distal division of the sMCL at all tested knee flexion angles, the meniscofemoral portion of the deep MCL at 20°, 60°, and 90° of knee flexion, and the meniscotibial portion of the deep MCL at 0° and 30° of knee flexion. Conclusion An intricate relationship exists among the main medial knee structures and their individual components for static function to applied loads. Clinical Significance: Interpretation of clinical knee motion testing following medial knee injuries will improve with the information in this study. Significant increases in external rotation at 30° of knee flexion were found with all medial knee structures sectioned, which indicates that a positive dial test may be found not only for posterolateral knee injuries but also for medial knee injuries.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kazumi Goto ◽  
Victoria Duthon ◽  
Jacques Menetrey

Abstract Purpose Although complete tear of the knee posterolateral corner (PLC) commonly occurs in combination with other knee ligamentous injuries, the incidence of isolated PLC injury was reported only 28% and overlooked in many cases. Nevertheless, an isolated PLC injury does not only provoke posterolateral instability, but also may be associated to hypermobile lateral meniscus. This study aims at showing the characteristics of isolated PLC injuries and to alert potential overlooked cases by describing their arthroscopic findings and clinical characteristics. Methods Seventy-one patients with a clinically proven isolated PLC injury who underwent knee arthroscopy were included in this study. Pre-operative symptoms and clinical signs at examination were recorded: Pain at the posterolateral aspect, feelings of instability, catching, locking; and for clinical signs: McMurray test, varus stress test in extension and at 30° of flexion, posterolateral drawer test at 30° and 80°, dial test at 30° and 80° of flexion. In terms of arthroscopic findings, systematic meniscal stability was performed to evaluate the presence of hypermobile lateral meniscus, “lateral drive through test” was also recorded in all cases. Results Positive Lateral Drive through test was found in 69 patients (95.8%). Hypermobile lateral meniscus was seen in all patients. Conclusions Hyper mobile lateral meniscus was concomitant with all isolated PLC injuries in our case series. As the typical arthroscopic characteristic, lateral drive through test positive were seen in 95.8%. In order to prevent overlooking this concomitant pathology, meticulous arthroscopic observation is crucial. Level of evidence Level IV.


2021 ◽  
Author(s):  
Cong-Cong Wu ◽  
Li-Mei Ye ◽  
Xiao-fei Li ◽  
Lin-Jun Shi

Abstract Background. The posterolateral complex (PLC), which consists of the popliteus tendon (PT), lateral collateral ligament (LCL), and popliteofibular ligament (PFL), is an indispensable structure of the knee joint. The aim of this study was to explore the functionality of the PLC by determining the specific role of each component in maintaining posterolateral knee stability. Methods. A finite element (FE) model was generated based on previous material property data and magnetic resonance imaging of a volunteer’s knee joint. The injury order of the PLC was set as LCL, PFL, and PT. A 134 N anterior load was applied to the tibia to investigate tibial displacement (TD). Tibial external rotation (TER) and tibial varus angulation (TVA) were measured under bending motions of 5 and 10 Nm. The instantaneous axis of rotation (IAR) of the knee joint under different rotation motions was also recorded. Results. The TD of the intact knee under a 134 N anterior load matched the values determined in previous studies. Our model showed consistent increases in TD, TVA, and TER after sequential damage of the PLC. In addition, sequential disruption caused the IAR to shift superiorly and laterally during varus rotation, and medially and anteriorly during external rotation. In the dynamic damage of the PLC, LCL injury had the largest effect on TD, TVA, TER, and IAR. Conclusions. Sequential injury of the PLC caused considerable loss of stability of the knee joint according to an FE model. The most significant structure of the PLC was the LCL.


Sign in / Sign up

Export Citation Format

Share Document