scholarly journals Hematopoietic lineage-converted T cells carrying tumor-associated antigen-recognizing TCRs effectively kill tumor cells

2020 ◽  
Vol 8 (2) ◽  
pp. e000498
Author(s):  
Fangxiao Hu ◽  
Dehao Huang ◽  
Yuxuan Luo ◽  
Peiqing Zhou ◽  
Cui Lv ◽  
...  

Tumor-associated antigen (TAA) T-cell receptor (TCR) gene-engineered T cells exhibit great potential in antitumor immunotherapy. Considering the high costs and low availability of patient-derived peripheral blood T cells, substantial efforts have been made to explore alternatives to natural T cells. We previously reported that enforced expression of Hoxb5 converted B cells into induced T (iT) cells in vivo. Here, we successfully regenerated naive OT1 (major histocompatibility complex I restricted ovalbumin antigen) iT cells (OT1-iT) in vivo by expressing Hoxb5 in pro-pre-B cells in the OT1 transgenic mouse. The OT1-iT cells can be activated and expanded in vitro in the presence of tumor cells. Particularly, these regenerated OT1-iT cells effectively eradicated tumor cells expressing the TAA (ovalbumin) both in vitro and in vivo. This study provides insights into the translational applications of blood lineage-transdifferentiated T cells in immunotherapy.

Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. 3528-3537 ◽  
Author(s):  
Maryam Ahmadi ◽  
Judith W. King ◽  
Shao-An Xue ◽  
Cécile Voisine ◽  
Angelika Holler ◽  
...  

Abstract The function of T-cell receptor (TCR) gene modified T cells is dependent on efficient surface expression of the introduced TCR α/β heterodimer. We tested whether endogenous CD3 chains are rate-limiting for TCR expression and antigen-specific T-cell function. We show that co-transfer of CD3 and TCR genes into primary murine T cells enhanced TCR expression and antigen-specific T-cell function in vitro. Peptide titration experiments showed that T cells expressing introduced CD3 and TCR genes recognized lower concentration of antigen than T cells expressing TCR only. In vivo imaging revealed that TCR+CD3 gene modified T cells infiltrated tumors faster and in larger numbers, which resulted in more rapid tumor elimination compared with T cells modified by TCR only. After tumor clearance, TCR+CD3 engineered T cells persisted in larger numbers than TCR-only T cells and mounted a more effective memory response when rechallenged with antigen. The data demonstrate that provision of additional CD3 molecules is an effective strategy to enhance the avidity, anti-tumor activity and functional memory formation of TCR gene modified T cells in vivo.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 962-962 ◽  
Author(s):  
Ksenia Bezverbnaya ◽  
Vivian Lau ◽  
Craig Aarts ◽  
Galina Denisova ◽  
Arya Afsahi ◽  
...  

Abstract Despite recent therapeutic developments, multiple myeloma remains an incurable plasma cell malignancy. Poor prognosis for myeloma patients relapsing post-transplant calls for the need for novel treatment options. Immunotherapy with engineered T cells has proven highly efficacious against B-cell cancers, and early-phase clinical trials suggest that multiple myeloma is susceptible to this form of therapy. We designed a new chimeric T cell receptor, T cell antigen coupler (TAC), which relies upon activation through endogenous T cell receptor complex, thus allowing engineered T cells to auto-regulate their activity (Helsen et al, Nat. Comm., 2018). Using published single-chain antibody fragments (scFvs) C11D5.3 and J22.9-xi, we generated B cell maturation antigen (BCMA)-specific TAC receptors for targeting multiple myeloma. Primary human T cells were transduced with lentiviral vectors carrying different BCMA TAC constructs and assessed for in vitro functionality via cytokine production, cytotoxicity, and proliferation assays. In vivo efficacy and T cell tracking were performed in an established orthotopic xenograft mouse model based on a BCMA-positive KMS-11 cell line. C11D5.3 and J22.9-xi TAC T cells demonstrated comparable in vitro performance with both types of cultures efficiently killing BCMA-expressing targets, producing IFN-γ, TNF-α, and IL-2 cytokines, and undergoing multiple rounds of proliferation. In vivo, TAC T cells carrying either scFv were capable of curing mice bearing disseminated myeloma; however, the TAC T cells carrying J22.9-xi scFv were more potent on a per-cell basis (Figure 1A, top panel). Mice in remission 3 months post-treatment with a single dose of 106 TAC-positive T cells showed evidence of sustained anti-tumor protection upon rechallenge with a fresh dose of 106 KMS-11 tumor cells (Figure 1B). Mice treated with low-dose J22.9-xi T cells were more resistant to rechallenge than mice treated with a comparable dose of C11D5.3 TAC T cells. Tracking of the TAC T cells in vivo revealed that the J22.9-xi TAC T cells expanded to a much larger extent than the C11D5.3 TAC T cells (Figure 1A, bottom panel), indicating that there were likely more J22.9-xi TAC T cells present at the time of tumor rechallenge. To understand whether biological aspects of BCMA may influence the proliferative response of the TAC T cells, we explored the influence of APRIL, the soluble ligand for BCMA, on TAC T cell proliferation in vitro. Strikingly, despite comparable proliferation of both TAC T cell populations following stimulation with KMS-11 tumor cells in the absence of APRIL in vitro, the presence of APRIL had a strong inhibitory effect on proliferation of C11D5.3 TAC T cells and only a modest inhibitory effect on J22.9-xi TAC T cells. Our preclinical findings support further development of TAC T cells for the treatment of multiple myeloma and underscore the importance of T cell expansion in determining the therapeutic activity of engineered T cells. This work further reveals a novel observation that the natural ligand of BCMA can impair the therapeutic impact of T cells engineered with chimeric receptors directed against BCMA and provide a basis for advancing BCMA-specific TAC T cells into the clinic. Disclosures Denisova: Triumvira Immunologics: Patents & Royalties. Afsahi:Triumvira Immunologics: Patents & Royalties. Helsen:Triumvira Immunologics: Employment, Patents & Royalties. Bramson:Triumvira Immunologics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


1998 ◽  
Vol 188 (11) ◽  
pp. 1977-1983 ◽  
Author(s):  
Sally R.M. Bennett ◽  
Francis R. Carbone ◽  
Tracey Toy ◽  
Jacques F.A.P. Miller ◽  
William R. Heath

This report investigates the response of CD8+ T cells to antigens presented by B cells. When C57BL/6 mice were injected with syngeneic B cells coated with the Kb-restricted ovalbumin (OVA) determinant OVA257–264, OVA-specific cytotoxic T lymphocyte (CTL) tolerance was observed. To investigate the mechanism of tolerance induction, in vitro–activated CD8+ T cells from the Kb-restricted, OVA-specific T cell receptor transgenic line OT-I (OT-I cells) were cultured for 15 h with antigen-bearing B cells, and their survival was determined. Antigen recognition led to the killing of the B cells and, surprisingly, to the death of a large proportion of the OT-I CTLs. T cell death involved Fas (CD95), since OT-I cells deficient in CD95 molecules showed preferential survival after recognition of antigen on B cells. To investigate the tolerance mechanism in vivo, naive OT-I T cells were adoptively transferred into normal mice, and these mice were coinjected with antigen-bearing B cells. In this case, OT-I cells proliferated transiently and were then lost from the secondary lymphoid compartment. These data provide the first demonstration that B cells can directly tolerize CD8+ T cells, and suggest that this occurs via CD95-mediated, activation-induced deletion.


2018 ◽  
Vol 2 (18) ◽  
pp. 2332-2340 ◽  
Author(s):  
Kalpana Parvathaneni ◽  
David W. Scott

Abstract Hemophilia A is an X-linked bleeding disorder caused by mutations in the factor VIII (FVIII) gene (F8). Treatment with recombinant or plasma-derived FVIII replacement therapy is standard therapy. A major problem in treating hemophilia A patients with therapeutic FVIII is that 20% to 30% of these patients produce neutralizing anti-FVIII antibodies (inhibitors) because they are not immunologically tolerant to this human protein. Hence, there is a need to establish tolerogenic protocols to FVIII epitopes. To specifically target FVIII-specific B cells, we engineered immunodominant FVIII domains (A2 and C2) as a chimeric antigen receptor expressed by both human and murine cytotoxic T cells. This FVIII domain engineered B-cell antibody receptor (BAR) that expresses T cells was capable of killing FVIII-reactive B-cell hybridomas in vitro and in vivo. Moreover, FVIII BAR CD8 T cells blocked the development of specific antibody from unimmunized spleen cells stimulated polyclonally with lipopolysaccharide in vitro. In addition, adoptive transfer of FVIII A2- and C2-BAR CD8 T cells significantly reduced the anti-FVIII antibody formation in hemophilic mice. These data suggest that BAR-engineered T cells are a promising approach for future prophylactic treatment for patients with severe hemophilia A who are at high risk of developing inhibitors.


2019 ◽  
Vol 68 (8) ◽  
pp. 1235-1243 ◽  
Author(s):  
Nadia Mensali ◽  
Marit Renée Myhre ◽  
Pierre Dillard ◽  
Sylvie Pollmann ◽  
Gustav Gaudernack ◽  
...  

Abstract Off-target toxicity due to the expression of target antigens in normal tissue or TCR cross-reactivity represents a major risk when using T cell receptor (TCR)-engineered T cells for treatment of solid tumours. Due to the inherent cross-reactivity of TCRs it is difficult to accurately predict their target recognition pre-clinically. It has become evident that direct testing in a human being represents the best evaluation of the risks. There is, therefore, a clear unmet need for assessing the safety of a therapeutic TCR in a more controllable manner than by the injection of permanently modified cellular products. Using transiently modified T cells combined with dose escalation has already been shown feasible for chimeric antigen receptor (CAR)-engineered T cells, but nothing is yet reported for TCR. We performed a preclinical evaluation of a therapeutic TCR transiently expressed in T cells by mRNA electroporation. We analyzed if the construct was active in vitro, how long it was detectable for and if this expression format was adapted to in vivo efficacy assessment. Our data demonstrate the potential of mRNA engineered T cells, although less powerful than permanent redirection, to induce a significant response. Thus, these findings support the development of mRNA based TCR-therapy strategies as a feasible and efficacious method for evaluating TCR safety and efficacy in first-in-man testing.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4520-4528 ◽  
Author(s):  
Hugh I. McFarland ◽  
Susan A. Hansal ◽  
Diane I. Morris ◽  
Daniel W. McVicar ◽  
Paul E. Love ◽  
...  

Abstract We constructed a chimeric molecule, composed of the T-cell receptor (TCR)–ζ chain fused to the extracellular domains of a prototypical allogeneic major histocompatibility complex (MHC) class I molecule, Dd, to assess whether such a construct could affect Dd allospecific responses in vitro and in vivo. To generate cytotoxic T lymphocytes (CTLs) expressing the construct, Dd-ζ was targeted to lymphocyte populations in transgenic mice by placing its expression under control of the CD2 promoter. In response to ligation of Dd, lymphocytes from transgenic mice expressing high levels of Dd-ζ are activated to proliferate and kill cells binding to Dd, despite the near total loss of CD8+ T cells in these mice. Thus, the Dd-ζ cytolytic cell was found not to be a conventional CD8+ CTL, but rather an unusual T lineage cell (CD3-CD5+Thy1.1+) that lacked αβ or γδ TCRs, as well as CD4 and CD8 coreceptors, but expressed surface markers strikingly similar to memory CTLs, including CD44, Ly-6C, and CD122. These cells originate in the thymus and potently veto responses to Dd in vitro. Lacking TCRs, these veto cells are unlikely to mediate graft-versus-host disease (GVHD) and thus may be useful as a cellular therapy for therapeutic deletion of alloreactive T cells in the settings of graft rejection and GVHD.


1993 ◽  
Vol 177 (1) ◽  
pp. 35-44 ◽  
Author(s):  
J A Goss ◽  
R Pyo ◽  
M W Flye ◽  
J M Connolly ◽  
T H Hansen

The preferential usage of certain T cell receptor (TCR) V beta genes has been well established in several major histocompatibility complex (MHC)-restricted immune responses. However, V beta usage among allogeneic responses remains unclear. Because recent findings of ours and others indicate that V beta 8 predominates in certain Ld-restricted, peptide-specific responses, we examined the V beta 8 usage in allogeneic responses to Ld. To selectively recognize the Ld molecule, cells from BALB/c-H-2dm2 (dm2), the Ld-loss mutant mouse, were stimulated in vitro or in vivo with wild-type BALB/c cells. We report here that after the intraperitoneal administration of the anti-V beta 8 monoclonal antibody (mAb) F23.1, peripheral V beta 8 T cells were depleted from dm2 mice. This in vivo depletion abrogated the ability of dm2 splenocytes to mount a primary response to Ld molecules. This abrogation was specific, since the response of V beta 8-depleted dm2 cells to Kb/Db antigens was the same as that of control nondepleted dm2 cells. Furthermore, in vivo depletion of V beta 8 cells was found to cause a dramatic prolongation of Ld-disparate skin grafts (mean survival time [MST] 22.1 +/- 2.1 vs. 10.3 +/- 1.1 d for saline-treated controls, or 10.9 +/- 1.7 d for controls treated with mAb KJ23 to V beta 17). By contrast, V beta 8 depletion had no effect on recipients grafted with haplotype-mismatched skin or single Dk-locus-disparate skin. These findings demonstrate that V beta 8+ T cells predominate in allogeneic response to Ld but not other alloantigens. The effect of V beta 8 depletion was found to be even more dramatic on recipients grafted with Ld-disparate vascularized heart transplants (MST > 100 vs. 8.6 +/- 0.5 d for controls). In total, these findings establish the efficacy of using mAb to the V beta gene family to specifically and significantly enhance the survival of allografts. The implications of detecting V beta 8 usage in both alloreactive or MHC-restricted TCR responses to the same class I molecule are discussed.


1985 ◽  
Vol 161 (5) ◽  
pp. 1122-1134 ◽  
Author(s):  
P D Greenberg ◽  
D E Kern ◽  
M A Cheever

The ability of noncytolytic Lyt-1+,2- T cells immune to FBL-3 leukemia to effect eradication of disseminated FBL-3 was studied. Adult thymectomized, irradiated, and T-depleted bone marrow-reconstituted (ATXBM) B6 hosts were cured of disseminated FBL-3 by treatment with 180 mg/kg cyclophosphamide (CY) and adoptively transferred Lyt-1+,2- T cells obtained from congenic B6/Thy-1.1 donors immune to FBL-3. Analysis of the T cell compartment of ATXBM hosts treated and rendered tumor-free by this therapy revealed that the only T cells present in the mice were donor-derived Lyt-1+,2- T cells. In vitro stimulation of these T cells with FBL-3 tumor cells, which express class I but no class II major histocompatibility complex antigens, induced lymphokine secretion, but did not result in the generation of cytotoxic T lymphocytes (CTL). Thus, in a setting in which mice lack Lyt-2+ T cells, and in which no CTL of either host or donor origin could be detected, immune Lyt-1+,2- T cells, in conjunction with CY, mediated eradication of a disseminated leukemia. The results suggest that delayed-type hypersensitivity responses induced by immune T cells represent a potentially useful effector mechanism for in vivo elimination of disseminated tumor cells.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A127-A127
Author(s):  
Agi Hamburger ◽  
Breanna DiAndreth ◽  
Jiajia Cui ◽  
Mark Daris ◽  
Melanie Munguia ◽  
...  

BackgroundCell therapy, with all its promise as a powerful solid-tumor modality, is still hampered by the fundamental obstacle of cancer therapy: the acute shortage of truly tumor-specific targets. It is well known that an average tumor contains loss of heterozygosity (LOH) at an astonishing frequency: ~20% genome wide. These losses are irreversible and absolutely distinguish the cancer from normal cells.MethodsWe describe a novel approach to cancer immunotherapy that draws on LOH as a large, so far untapped source of cancer targets. To exploit such allelic losses, we focus on polymorphic loci and target the remaining allelic product of a locus that has LOH. We engineer T cells with a modular signal-integration circuit designed to be activated only by tumor cells that have lost expression of one specific allele on their surface.ResultsWe use the HLA locus which undergoes LOH at a frequency of 13%, and the HLA-A*02 allele specifically, as proof of concept. We present a large body of quantitative in vitro data, along with in vivo data, that support the use of a synthetic signal-integration circuit called Tmod as a cancer therapy. We also describe Tmod’s mechanistic properties, including thorough structure/function analysis of its components.ConclusionsLOH is a rich source of new targets, provided a system of sufficient power can be devised to exploit them. Our Tmod signal integration system confers on engineered T cells the capacity to discriminate effectively between normal and tumor cells that contain specific allelic losses.Ethics ApprovalThe animal study was approved by Explora BioLabs’ Ethics Board, protocol number EB17-010-059


1996 ◽  
Vol 183 (1) ◽  
pp. 203-213 ◽  
Author(s):  
F Granucci ◽  
M Rescigno ◽  
G Marconi ◽  
M Foti ◽  
P Ricciardi-Castagnoli

The mechanisms that induce T cell tolerance to circulating self-proteins are still controversial, and both the deletion and selection of autoreactive T cells have been observed in the thymus of transgenic mouse models. To address the question of the induction of tolerance to circulating self-constituents, a T cell receptor-transgenic mouse specific for the serum protein immunoglobulin (Ig) gamma and (IgG2ab) was generated. The choice of an allotype-specific T cell also allowed the generation of transgenic control mice not expressing the self-antigen. It was found that the transgenic T cells were not deleted in the thymus, did not become tolerant in the periphery, and regulated the function of gamma 2ab-positive B cells as shown by the lack of IgG2ab protein in the serum of the transgenic mice. In spite of this activity in vivo, the transgenic T cells did not proliferate in vitro in response to the allotype-specific peptide. Interestingly, antigen-specific T cell proliferation could be restored if the transgenic mice were previously challenged to induce IgG2ab responses. After this challenge, IgG2ab protein in the serum of the transgenic mice could be partially restored, although still remaining much lower than in control mice. In addition, there was a dramatic increase in serum IgE levels, suggesting that newly generated gamma 2ab-secreting B cells can be induced to switch to IgE in the presence of allotype-specific T cells. These results indicate that Ig-specific T cells may represent a late-acting form of T cell help for the regulation of the IgG2a-to-IgE class switch.


Sign in / Sign up

Export Citation Format

Share Document