Signaling through MHC in transgenic mice generates a population of memory phenotype cytolytic cells that lack TCR

Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4520-4528 ◽  
Author(s):  
Hugh I. McFarland ◽  
Susan A. Hansal ◽  
Diane I. Morris ◽  
Daniel W. McVicar ◽  
Paul E. Love ◽  
...  

Abstract We constructed a chimeric molecule, composed of the T-cell receptor (TCR)–ζ chain fused to the extracellular domains of a prototypical allogeneic major histocompatibility complex (MHC) class I molecule, Dd, to assess whether such a construct could affect Dd allospecific responses in vitro and in vivo. To generate cytotoxic T lymphocytes (CTLs) expressing the construct, Dd-ζ was targeted to lymphocyte populations in transgenic mice by placing its expression under control of the CD2 promoter. In response to ligation of Dd, lymphocytes from transgenic mice expressing high levels of Dd-ζ are activated to proliferate and kill cells binding to Dd, despite the near total loss of CD8+ T cells in these mice. Thus, the Dd-ζ cytolytic cell was found not to be a conventional CD8+ CTL, but rather an unusual T lineage cell (CD3-CD5+Thy1.1+) that lacked αβ or γδ TCRs, as well as CD4 and CD8 coreceptors, but expressed surface markers strikingly similar to memory CTLs, including CD44, Ly-6C, and CD122. These cells originate in the thymus and potently veto responses to Dd in vitro. Lacking TCRs, these veto cells are unlikely to mediate graft-versus-host disease (GVHD) and thus may be useful as a cellular therapy for therapeutic deletion of alloreactive T cells in the settings of graft rejection and GVHD.

2020 ◽  
Vol 8 (2) ◽  
pp. e000498
Author(s):  
Fangxiao Hu ◽  
Dehao Huang ◽  
Yuxuan Luo ◽  
Peiqing Zhou ◽  
Cui Lv ◽  
...  

Tumor-associated antigen (TAA) T-cell receptor (TCR) gene-engineered T cells exhibit great potential in antitumor immunotherapy. Considering the high costs and low availability of patient-derived peripheral blood T cells, substantial efforts have been made to explore alternatives to natural T cells. We previously reported that enforced expression of Hoxb5 converted B cells into induced T (iT) cells in vivo. Here, we successfully regenerated naive OT1 (major histocompatibility complex I restricted ovalbumin antigen) iT cells (OT1-iT) in vivo by expressing Hoxb5 in pro-pre-B cells in the OT1 transgenic mouse. The OT1-iT cells can be activated and expanded in vitro in the presence of tumor cells. Particularly, these regenerated OT1-iT cells effectively eradicated tumor cells expressing the TAA (ovalbumin) both in vitro and in vivo. This study provides insights into the translational applications of blood lineage-transdifferentiated T cells in immunotherapy.


1993 ◽  
Vol 177 (1) ◽  
pp. 35-44 ◽  
Author(s):  
J A Goss ◽  
R Pyo ◽  
M W Flye ◽  
J M Connolly ◽  
T H Hansen

The preferential usage of certain T cell receptor (TCR) V beta genes has been well established in several major histocompatibility complex (MHC)-restricted immune responses. However, V beta usage among allogeneic responses remains unclear. Because recent findings of ours and others indicate that V beta 8 predominates in certain Ld-restricted, peptide-specific responses, we examined the V beta 8 usage in allogeneic responses to Ld. To selectively recognize the Ld molecule, cells from BALB/c-H-2dm2 (dm2), the Ld-loss mutant mouse, were stimulated in vitro or in vivo with wild-type BALB/c cells. We report here that after the intraperitoneal administration of the anti-V beta 8 monoclonal antibody (mAb) F23.1, peripheral V beta 8 T cells were depleted from dm2 mice. This in vivo depletion abrogated the ability of dm2 splenocytes to mount a primary response to Ld molecules. This abrogation was specific, since the response of V beta 8-depleted dm2 cells to Kb/Db antigens was the same as that of control nondepleted dm2 cells. Furthermore, in vivo depletion of V beta 8 cells was found to cause a dramatic prolongation of Ld-disparate skin grafts (mean survival time [MST] 22.1 +/- 2.1 vs. 10.3 +/- 1.1 d for saline-treated controls, or 10.9 +/- 1.7 d for controls treated with mAb KJ23 to V beta 17). By contrast, V beta 8 depletion had no effect on recipients grafted with haplotype-mismatched skin or single Dk-locus-disparate skin. These findings demonstrate that V beta 8+ T cells predominate in allogeneic response to Ld but not other alloantigens. The effect of V beta 8 depletion was found to be even more dramatic on recipients grafted with Ld-disparate vascularized heart transplants (MST > 100 vs. 8.6 +/- 0.5 d for controls). In total, these findings establish the efficacy of using mAb to the V beta gene family to specifically and significantly enhance the survival of allografts. The implications of detecting V beta 8 usage in both alloreactive or MHC-restricted TCR responses to the same class I molecule are discussed.


1996 ◽  
Vol 183 (1) ◽  
pp. 203-213 ◽  
Author(s):  
F Granucci ◽  
M Rescigno ◽  
G Marconi ◽  
M Foti ◽  
P Ricciardi-Castagnoli

The mechanisms that induce T cell tolerance to circulating self-proteins are still controversial, and both the deletion and selection of autoreactive T cells have been observed in the thymus of transgenic mouse models. To address the question of the induction of tolerance to circulating self-constituents, a T cell receptor-transgenic mouse specific for the serum protein immunoglobulin (Ig) gamma and (IgG2ab) was generated. The choice of an allotype-specific T cell also allowed the generation of transgenic control mice not expressing the self-antigen. It was found that the transgenic T cells were not deleted in the thymus, did not become tolerant in the periphery, and regulated the function of gamma 2ab-positive B cells as shown by the lack of IgG2ab protein in the serum of the transgenic mice. In spite of this activity in vivo, the transgenic T cells did not proliferate in vitro in response to the allotype-specific peptide. Interestingly, antigen-specific T cell proliferation could be restored if the transgenic mice were previously challenged to induce IgG2ab responses. After this challenge, IgG2ab protein in the serum of the transgenic mice could be partially restored, although still remaining much lower than in control mice. In addition, there was a dramatic increase in serum IgE levels, suggesting that newly generated gamma 2ab-secreting B cells can be induced to switch to IgE in the presence of allotype-specific T cells. These results indicate that Ig-specific T cells may represent a late-acting form of T cell help for the regulation of the IgG2a-to-IgE class switch.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 324-330 ◽  
Author(s):  
Liming Yang ◽  
Barb Du Temple ◽  
Qasim Khan ◽  
Li Zhang

Abstract Pretransplantation donor-specific transfusion (DST) can enhance allograft survival in man and animals. However, due to the lack of a specific marker to identify donor-reactive cells in vivo in man and normal (nontransgenic) animals, the underlying mechanism remains unknown. In this study, we use 2CF1 transgenic mice expressing a transgenic T-cell receptor (TCR) specifically recognizing Ld, a major histocompatibility complex (MHC) class I molecule, to delineate the role of DST in long-term skin allograft survival and its underlying mechanisms. Our main findings include: (1) in the absence of any other immunosuppressive treatment, a single dose pretransplantation infusion of viable splenocytes from an Ld+ donor is sufficient to induce permanent donor-specific skin allograft survival in 2CF1anti-Ld TCR transgenic mice; (2) DST leads to a deletion of the majority (>60%) of donor-reactive T cells in the periphery of the recipient. However, deletion does not necessarily result in tolerance; (3) remaining donor-reactive T cells from DST-treated mice are fully responsive to Ld in vitro, and can suppress the antidonor response of naive T cells in vitro only when exogenous interleukin (IL)-4 is provided; and (4) the sera level of IL-4 in DST-treated tolerant mice is significantly increased. These results suggest that the generation of a subset of T cells with the potential to specifically inhibit antidonor responses, together with promotion of IL-4 production in recipients, may be important mechanisms for the induction and maintenance of antigen-specific tolerance.


1996 ◽  
Vol 184 (6) ◽  
pp. 2141-2152 ◽  
Author(s):  
Maria Pihlgren ◽  
Patrice M. Dubois ◽  
Martine Tomkowiak ◽  
Tove Sjögren ◽  
Jacqueline Marvel

The characteristics of CD8+ T cells responsible for memory responses are still largely unknown. Particularly, it has not been determined whether different activation thresholds distinguish naive from memory CD8+ T cell populations. In most experimental systems, heterogeneous populations of primed CD8+ T cells can be identified in vivo after immunization. These cells differ in terms of cell cycle status, surface phenotype, and/or effector function. This heterogeneity has made it difficult to assess the activation threshold and the relative role of these subpopulations in memory responses. In this study we have used F5 T cell receptor transgenic mice to generate a homogeneous population of primed CD8+ T cells. In the F5 transgenic mice, peptide injection in vivo leads to activation of most peripheral CD8+ T cells. In vivo BrdU labeling has been used to follow primed T cells over time periods spanning several weeks after peptide immunization. Our results show that the majority of primed CD8+ T cells generated in this system are not cycling and express increased levels of CD44 and Ly6C. These cells remain responsive to secondary peptide challenge in vivo as evidenced by short term upregulation of activation markers such as CD69 and CD44. The activation thresholds of naive and primed CD8+ T cells were compared in vitro. We found that CD8+ T cells from primed mice are activated by peptide concentrations 10–50-fold lower than naive mice. In addition, the kinetics of interleukin 2Rα chain upregulation by primed CD8+ T cells differ from naive CD8+ T cells. These primed hyperresponsive CD8+ T cells might play an important role in the memory response.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 324-330
Author(s):  
Liming Yang ◽  
Barb Du Temple ◽  
Qasim Khan ◽  
Li Zhang

Pretransplantation donor-specific transfusion (DST) can enhance allograft survival in man and animals. However, due to the lack of a specific marker to identify donor-reactive cells in vivo in man and normal (nontransgenic) animals, the underlying mechanism remains unknown. In this study, we use 2CF1 transgenic mice expressing a transgenic T-cell receptor (TCR) specifically recognizing Ld, a major histocompatibility complex (MHC) class I molecule, to delineate the role of DST in long-term skin allograft survival and its underlying mechanisms. Our main findings include: (1) in the absence of any other immunosuppressive treatment, a single dose pretransplantation infusion of viable splenocytes from an Ld+ donor is sufficient to induce permanent donor-specific skin allograft survival in 2CF1anti-Ld TCR transgenic mice; (2) DST leads to a deletion of the majority (>60%) of donor-reactive T cells in the periphery of the recipient. However, deletion does not necessarily result in tolerance; (3) remaining donor-reactive T cells from DST-treated mice are fully responsive to Ld in vitro, and can suppress the antidonor response of naive T cells in vitro only when exogenous interleukin (IL)-4 is provided; and (4) the sera level of IL-4 in DST-treated tolerant mice is significantly increased. These results suggest that the generation of a subset of T cells with the potential to specifically inhibit antidonor responses, together with promotion of IL-4 production in recipients, may be important mechanisms for the induction and maintenance of antigen-specific tolerance.


1996 ◽  
Vol 183 (3) ◽  
pp. 891-899 ◽  
Author(s):  
B Stockinger ◽  
T Zal ◽  
A Zal ◽  
D Gray

We have made use of T cell receptor (TCR)-transgenic mice with CD4+ T cells expressing a receptor specific for the self-antigen C5 (fifth component of complement) to study the role of different antigen-presenting cells in the determination of CD4+ T cell effector type. Contact of T cells from C5 TCR-transgenic mice with C5 protein or C5 peptide in vivo or in vitro induces biased T helper cell (Th) 1 type responses resulting in exclusive production of high levels of interferon gamma and interleukin (IL) 2. Transgenic mice, in contrast to nontransgenic littermates, do not generate an antibody response to C5. We show in this paper that B cell presentation in vitro induces a switch to the Th2 subset indicated by production of IL-4, and targetting C5 to B cells in vivo results in the generation of C5-specific antibodies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2010 ◽  
Vol 207 (8) ◽  
pp. 1701-1711 ◽  
Author(s):  
Rachel A. Gottschalk ◽  
Emily Corse ◽  
James P. Allison

T cell receptor (TCR) ligation is required for the extrathymic differentiation of forkhead box p3+ (Foxp3+) regulatory T cells. Several lines of evidence indicate that weak TCR stimulation favors induction of Foxp3 in the periphery; however, it remains to be determined how TCR ligand potency influences this process. We characterized the density and affinity of TCR ligand favorable for Foxp3 induction and found that a low dose of a strong agonist resulted in maximal induction of Foxp3 in vivo. Initial Foxp3 induction by weak agonist peptide could be enhanced by disruption of TCR–peptide major histocompatibility complex (pMHC) interactions or alteration of peptide dose. However, time course experiments revealed that Foxp3-positive cells induced by weak agonist stimulation are deleted, along with their Foxp3-negative counterparts, whereas Foxp3-positive cells induced by low doses of the strong agonist persist. Our results suggest that, together, pMHC ligand potency, density, and duration of TCR interactions define a cumulative quantity of TCR stimulation that determines initial peripheral Foxp3 induction. However, in the persistence of induced Foxp3+ T cells, TCR ligand potency and density are noninterchangeable factors that influence the route to peripheral tolerance.


2002 ◽  
Vol 196 (4) ◽  
pp. 481-492 ◽  
Author(s):  
Kristin V. Tarbell ◽  
Mark Lee ◽  
Erik Ranheim ◽  
Cheng Chi Chao ◽  
Maija Sanna ◽  
...  

Glutamic acid decarboxylase (GAD)65 is an early and important antigen in both human diabetes mellitus and the nonobese diabetic (NOD) mouse. However, the exact role of GAD65-specific T cells in diabetes pathogenesis is unclear. T cell responses to GAD65 occur early in diabetes pathogenesis, yet only one GAD65-specific T cell clone of many identified can transfer diabetes. We have generated transgenic mice on the NOD background expressing a T cell receptor (TCR)-specific for peptide epitope 286–300 (p286) of GAD65. These mice have GAD65-specific CD4+ T cells, as shown by staining with an I-Ag7(p286) tetramer reagent. Lymphocytes from these TCR transgenic mice proliferate and make interferon γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α, and IL-10 when stimulated in vitro with GAD65 peptide 286–300, yet these TCR transgenic animals do not spontaneously develop diabetes, and insulitis is virtually undetectable. Furthermore, in vitro activated CD4 T cells from GAD 286 TCR transgenic mice express higher levels of CTL-associated antigen (CTLA)-4 than nontransgenic littermates. CD4+ T cells, or p286-tetramer+CD4+ Tcells, from GAD65 286–300-specific TCR transgenic mice delay diabetes induced in NOD.scid mice by diabetic NOD spleen cells. This data suggests that GAD65 peptide 286–300-specific T cells have disease protective capacity and are not pathogenic.


Sign in / Sign up

Export Citation Format

Share Document