scholarly journals Therapeutic afucosylated monoclonal antibody and bispecific T-cell engagers for T-cell acute lymphoblastic leukemia

2021 ◽  
Vol 9 (2) ◽  
pp. e002026
Author(s):  
Daniele Caracciolo ◽  
Caterina Riillo ◽  
Andrea Ballerini ◽  
Giuseppe Gaipa ◽  
Ludovic Lhermitte ◽  
...  

BackgroundT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a poor cure rate for relapsed/resistant patients. Due to the lack of T-cell restricted targetable antigens, effective immune-therapeutics are not presently available and the treatment of chemo-refractory T-ALL is still an unmet clinical need. To develop novel immune-therapy for T-ALL, we generated an afucosylated monoclonal antibody (mAb) (ahuUMG1) and two different bispecific T-cell engagers (BTCEs) against UMG1, a unique CD43-epitope highly and selectively expressed by T-ALL cells from pediatric and adult patients.MethodsUMG1 expression was assessed by immunohistochemistry (IHC) on a wide panel of normal tissue microarrays (TMAs), and by flow cytometry on healthy peripheral blood/bone marrow-derived cells, on 10 different T-ALL cell lines, and on 110 T-ALL primary patient-derived cells. CD43-UMG1 binding site was defined through a peptide microarray scanning. ahuUMG1 was generated by Genetic Glyco-Engineering technology from a novel humanized mAb directed against UMG1 (huUMG1). BTCEs were generated as IgG1-(scFv)2 constructs with bivalent (2+2) or monovalent (2+1) CD3ε arms. Antibody dependent cellular cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP) and redirected T-cell cytotoxicity assays were analysed by flow cytometry. In vivo antitumor activity of ahUMG1 and UMG1-BTCEs was investigated in NSG mice against subcutaneous and orthotopic xenografts of human T-ALL.ResultsAmong 110 T-ALL patient-derived samples, 53 (48.1%) stained positive (24% of TI/TII, 82% of TIII and 42.8% of TIV). Importantly, no expression of UMG1-epitope was found in normal tissues/cells, excluding cortical thymocytes and a minority (<5%) of peripheral blood T lymphocytes. ahUMG1 induced strong ADCC and ADCP on T-ALL cells in vitro, which translated in antitumor activity in vivo and significantly extended survival of treated mice. Both UMG1-BTCEs demonstrated highly effective killing activity against T-ALL cells in vitro. We demonstrated that this effect was specifically exerted by engaged activated T cells. Moreover, UMG1-BTCEs effectively antagonized tumor growth at concentrations >2 log lower as compared with ahuUMG1, with significant mice survival advantage in different T-ALL models in vivo.ConclusionAltogether our findings, including the safe UMG1-epitope expression profile, provide a framework for the clinical development of these innovative immune-therapeutics for this still orphan disease.

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1726
Author(s):  
Valentina Saccomani ◽  
Angela Grassi ◽  
Erich Piovan ◽  
Deborah Bongiovanni ◽  
Ludovica Di Martino ◽  
...  

T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.


Blood ◽  
2019 ◽  
Vol 133 (21) ◽  
pp. 2291-2304 ◽  
Author(s):  
Diego Sánchez-Martínez ◽  
Matteo L. Baroni ◽  
Francisco Gutierrez-Agüera ◽  
Heleia Roca-Ho ◽  
Oscar Blanch-Lombarte ◽  
...  

Abstract Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient–derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


2017 ◽  
Vol 405 ◽  
pp. 73-78 ◽  
Author(s):  
Sausan A. Moharram ◽  
Kinjal Shah ◽  
Fatima Khanum ◽  
Alissa Marhäll ◽  
Mohiuddin Gazi ◽  
...  

2019 ◽  
Author(s):  
Kirsti L. Walker ◽  
Sabrina A. Kabakov ◽  
Fen Zhu ◽  
Myriam N. Bouchlaka ◽  
Sydney L Olson ◽  
...  

AbstractRelapsed/refractory T cell acute lymphoblastic leukemia (T-ALL) is difficult to salvage especially in heavily pretreated patients, thus novel targeted agents are sorely needed. Hyperactivated JAK/STAT and BCL2 overexpression promote increased T-ALL proliferation and survival, and targeting these pathways with ruxolitinib and venetoclax may provide an alternative approach to achieve clinical remissions. Ruxolitinib and venetoclax show a dose-dependent effect individually, but combination treatment synergistically reduces survival and proliferation of Jurkat and Loucy cells in vitro. Using a xenograft CXCR4+ Jurkat model, the combination treatment fails to improve survival, with death from hind limb paralysis. Despite on-target inhibition by the drugs, histopathology demonstrates increased leukemic infiltration into the central nervous system (CNS), which expresses CXCL12, as compared to liver or bone marrow. Liquid chromatography-tandem mass spectroscopy shows that neither ruxolitinib nor venetoclax can effectively cross the blood-brain barrier, limiting efficacy against CNS T-ALL. Deletion of CXCR4 on Jurkat cells by CRISPR/Cas9 results in prolonged survival and a reduction in overall and neurologic clinical scores. While combination therapy with ruxolitinib and venetoclax shows promise for treating T-ALL, additional inhibition of the CXCR4-CXCL12 axis will be needed to eliminate both systemic and CNS T-ALL burden and maximize the possibility of complete remission.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1322-1322
Author(s):  
Manabu Kusakabe ◽  
Ann Chong Sun ◽  
Kateryna Tyshchenko ◽  
Rachel Wong ◽  
Aastha Nanda ◽  
...  

Abstract Mechanistic studies in human cancer have relied heavily on established cell lines and genetically engineered mouse models, but these are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts (PDX); however, as an experimental model these are hampered by their variable genetic background, logistic challenges in establishing and distributing diverse collections, and the fact they cannot be independently reproduced. We report here a completely synthetic, efficient, and highly reproducible means for generating T-cell acute lymphoblastic leukemia (T-ALL) de novo by lentiviral transduction of normal CD34+ human cord blood (CB) derived hematopoietic progenitors with a combination of known T-ALL oncogenes. Transduced CB cells exhibit differentiation arrest and multi-log expansion when cultured in vitro on OP9-DL1 feeders, and generate serially transplantable, aggressive leukemia when injected into immunodeficient NSG mice with latencies as short as 80 days (median 161 days, range 79-321 days). RNA-seq analysis of synthetic CB leukemias confirmed their reproducibility and similarity to PDX tumors, while whole exome sequencing revealed ongoing clonal evolution in vivo with acquisition of secondary mutations that are seen recurrently in natural human disease. The in vitro component of this synthetic system affords direct access to "pre-leukemia" cells undergoing the very first molecular changes as they are redirected from normal to malignant developmental trajectories. Accordingly, we performed RNA-seq and modified histone ChIP-seq on nascently transduced CB cells harvested from the first 2-3 weeks in culture. We identified coordinate upregulation of multiple anterior HOXB genes (HOXB2-B5) with contiguous H3K27 demethylation/acetylation as a striking feature in these early pre-leukemia cells. Interestingly, we also found coordinate upregulation of these same HOXB genes in a cohort of 264 patient T-ALLs (COG TARGET study) and that they defined a subset of patients with significantly poorer event-free survival (Log-rank p-value = 0.0132). Patients in the "HOXB high" subgroup are distinct from those with ETP-ALL, but are enriched within TAL1, NKX2-1, and "unknown" transcription factor genetic subgroups. We further show by shRNA-mediated knockdown that HOXB gene expression confers growth advantage in nascently transduced CB cells, established synthetic CB leukemias, and a subset of established human T-ALL cell lines. Of note, while there is prior literature on the role of HOXA genes in AML and T-ALL, and of HOXB genes in normal HSC expansion, this is the first report to our knowledge of a role for HOXB genes in human T-ALL despite over 2 decades of studies relying mostly on mouse leukemia and cell line models. The synthetic approach we have taken here allows investigation of both early and late events in human leukemogenesis and delivers an efficient and reproducible experimental platform that can support functional testing of individual genetic variants necessary for precision medicine efforts and targeted drug screening/validation. Further, since all tumors including PDXs continue to evolve during serial propagation in vivo, synthetic tumors represent perhaps the only means by which we can explore early events in cellular transformation and segregate their biology from confounding effects of multiple and varied secondary events that accumulate in highly "evolved" samples. Disclosures Steidl: Seattle Genetics: Consultancy; Tioma: Research Funding; Bristol-Myers Squibb: Research Funding; Roche: Consultancy; Juno Therapeutics: Consultancy; Nanostring: Patents & Royalties: patent holding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2670-2670
Author(s):  
Victoria L Bentley ◽  
Chansey J Veinotte ◽  
Dale Corkery ◽  
Marissa A Leblanc ◽  
Karen Bedard ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subset of ALL, for which there is a need for new therapeutic strategies and efficient preclinical screening methods. We have pioneered an innovative zebrafish human cancer xenotransplantation (XT) model to examine drug-tumor interactions in vivo. T-ALL cell lines and primary patient T-ALL samples were microinjected into 48-hour zebrafish embryos, a stage at which the adaptive immune system has not yet developed. Fluorescent labelling of tumor cells prior to injection and use of casper pigment mutant fish facilitates evaluation of drug response both by direct observation in transparent fish and enumeration of human cells following embryo dissociation. Proliferation rates are rapidly determined by directly counting fluorescent cells using in silico-based programs and/or utilizing immunohistochemical approaches to distinguish human cancer cells from host cell populations. T-ALL cell lines harboring defined mutations in the NOTCH1, phosphoinositide 3-kinase (PI3K)/AKT and mTOR pathways differentially responded to targeted inhibition using the γ-secretase inhibitor Compound E, triciribine, and rapamycin, when xenografted into embryos, consistent with responses in vitro. Primary patient-derived T-ALL bone marrow samples similarly engrafted and proliferated in zebrafish embryos. Using this in vivo chemical genomic approach, a targetable mutation sensitive to γ-secretase inhibition was identified from the diagnostic bone marrow sample of a child with T-ALL, which was confirmed by exome Sanger sequencing, and validated as a gain-of-function mutation in the NOTCH1 gene by luciferase assay and Western blot. Focused chemical genomics using the zebrafish T-ALL XT model provides a means of tailoring therapy using a real time in vivo assay that more accurately recapitulates the tumor microenvironment than in vitro methods and more rapidly than mouse xenografts. Moreover, the efficiency and cost-effectiveness of this innovative platform provides a novel intermediary for the prioritization of much-needed drug candidates in the preclinical pipeline. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 674-682 ◽  
Author(s):  
Charlotte V. Cox ◽  
Hannah M. Martin ◽  
Pamela R. Kearns ◽  
Paul Virgo ◽  
Roger S. Evely ◽  
...  

Abstract A significant proportion of children with T-cell acute lymphoblastic leukemia (T-ALL) continue to fail therapy. Consequently, characterization of the cells that proliferate to maintain the disease should provide valuable information on the most relevant therapeutic targets. We have used in vitro suspension culture (SC) and nonobese diabetic–severe combined immune deficient (NOD/SCID) mouse assays to phenotypically characterize and purify T-ALL progenitor cells. Cells from 13 pediatric cases were maintained in vitro for at least 4 weeks and expanded in 8 cases. To characterize the progenitors, cells were sorted for expression of CD34 and CD4 or CD7 and the subfractions were evaluated in vitro and in vivo. The majority of cells capable of long-term proliferation in vitro were derived from the CD34+/CD4− and CD34+/CD7− subfractions. Moreover, the CD34+/CD4− or CD7− cells were the only subfractions capable of NOD/SCID engraftment. These T-ALL cells successfully repopulated secondary and tertiary recipients with equivalent levels of engraftment, demonstrating self-renewal ability. The immunophenotype and genotype of the original leukemia cells were preserved with serial passage in the NOD/SCID mice. These data demonstrate the long-term repopulating ability of the CD34+/CD4− and CD34+/CD7− subfractions in T-ALL and suggest that a cell with a more primitive phenotype was the target for leukemic transformation in these cases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Guoli Li ◽  
Xinyue Lei ◽  
Yingchi Zhang ◽  
Zhe Liu ◽  
Kegan Zhu

ALL (Acute lymphoblastic leukemia) is the most common pediatric malignancy and T-ALL (T-cell acute lymphoblastic leukemia) comprises about 15% cases. Compared with B-ALL (B-cell acute lymphoblastic leukemia), the prognosis of T-ALL is poorer, the chemotherapy is easier to fail and the relapse rate is higher. Previous studies mainly focused in Notch1-related long non-coding RNAs (lncRNAs) in T-ALL. Here, we intend to investigate lncRNAs involved in T-ALL covering different subtypes. The lncRNA PPM1A-AS was screened out for its significant up-regulation in 10 T-ALL samples of different subtypes than healthy human thymus extracts. Besides, the PPM1A-AS expression levels in 3 T-ALL cell lines are markedly higher than that in CD45+ T cells of healthy human. We further demonstrate that PPM1A-AS can promote cell proliferation and inhibit cell apoptosis in vitro and can influence T-ALL growth in vivo. Finally, we verified that PPM1A-AS can regulate core proteins, Notch4, STAT3 and Akt, of 3 important signaling pathways related to T-ALL. These results confirm that lncRNA PPM1A-AS can act as an oncogene in T-ALL and maybe a potential clinical target of patients resistant to current chemotherapy or relapsed cases.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1330-1330 ◽  
Author(s):  
Emilee Senkevitch ◽  
Julie Hixon ◽  
Caroline Andrews ◽  
Joao T Barata ◽  
Wenqing Li ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) results from transformation of immature B or T cells, and is the most common pediatric cancer. Though the current cure rate of ALL is 80-90%, it is important to understand the underlying biology of ALL in order to develop refined therapies for patients who fail to respond to conventional chemotherapy as well as to reduce its toxicity. The IL-7 receptor (IL-7R) signaling pathway is necessary for the proliferation and survival of T cells. Together with collaborators, we have shown that 9% of patients with T cell acute lymphoblastic leukemia (T-ALL) have gain of function mutations in IL-7R alpha. These mutations promote homodimerization of IL-7R alpha subunits, resulting in constitutive activation of this pathway via Janus Kinase 1 (JAK1). As the JAK-STAT pathway is downstream of the IL-7 receptor, we hypothesized that JAK inhibitors could be used to treat T-ALL patients with IL-7R mutations. To demonstrate this, we first established a cell line model of T-ALL driven by constitutive IL-7R signaling. The model cells were established by transforming the D1 thymocyte cell line with a mutated IL-7R alpha derived from a patient sequence. These cells termed "D1_hIL7R_P1" are also GFP+, which allows us to monitor the proliferation of the cells in vivo.I have showed that D1_hIL7R_P1 cells delivered intravenously result in an aggressive leukemia with morbidity within 18-21 days. Ruxolitinib, a JAK1 inhibitor, inhibits survival, proliferation, and STAT5 activation of D1_hIL7R_P1 cells in vitro. To treat this leukemia in vivo, I administered ruxolitinib for 5 days at a dose of 150 mg/kg to mice starting 8 days after D1_hIL7R_P1 engraftment. Tissues were then harvested for analysis of GFP+ cells as a measure of leukemic burden via flow cytometry. Ruxolitinib reduced leukemic cells from 15% in the blood (as demonstrated in untreated mice) to 5%, from 30% to 10% in the spleen, and 40% to 20% in the lungs. With these promising results, I have acquired T-ALL patient samples that can be xenografted into NSG mice. TALL#5 cell line successfully engrafts in 30 days and can be detected in the bone marrow, spleen, and peripheral blood by flow cytometry. Additionally, TALL#5 expresses human IL-7R alpha and is sensitive to ruxolitinib treatment in vitro. I have also identified two T-ALL cell lines, DND41 and KOPTK1, which express high levels of IL-7R alpha. These cell lines are also potential candidates for studying the effects of ruxolitinib on T-ALL in NSG mice. TALL#5, DND41, and KOPTK1 will be engrafted into mice, and after leukemia is established, mice will be treated with ruxolitinib. If successful, this will give us insight into the effectiveness of JAK inhibitors in treating ALL, and which patients can be recruited for future clinical trials. Disclosures Off Label Use: Ruxolitinib is a JAK1/2 inhibitor that is FDA approved for myelofibrosis. My experiments involve pre-clinical studies looking at the efficacy of ruxolitinib in leukemic mice..


Sign in / Sign up

Export Citation Format

Share Document