scholarly journals 137 Development of anti-Mucin1 CAR-T against solid tumors

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A146-A146
Author(s):  
Jihyun Lee ◽  
Areum Park ◽  
Jungwon Choi ◽  
Dae Gwan Yi ◽  
Hee Jung Yang ◽  
...  

BackgroundChimeric antigen receptor (CAR) -T cell therapies have proven to be effective against various liquid tumors. However, the development of CAR-T against solid tumors has been challenging due to insufficient efficacy and potential on-target off-tumor toxicities caused by low expression of tumor antigens on normal tissues. Testing various affinities of CARs has demonstrated that lower affinity CARs maintain its anti-tumor effect while minimizing safety concerns (1). In order to develop a CAR-T against solid tumors expressing Mucin1, we have screened for Mucin1 binding antibodies and tested their anti-tumor effect in vitro and in vivo. The potential of on-target off-tumor toxicity was also measured in vitro.MethodsAnti-Mucin1 human single chain variable fragments (scFv) were obtained via screening against a scFv display library. Anti-Mucin1 scFvs were incorporated into CARs and in vitro, in vivo functions against various tumor cells expressing Mucin1 were tested. For in vivo studies, tumor bearing NOG mice (HCC1954 cells) received anti-Mucin1 CAR-T cells. Therapeutic efficacy was evaluated by measuring tumor volumes. Potential on-target off-tumor toxicity against Mucin1 on normal cells was tested by investigating the killing effect of anti-Mucin1 CAR-T against cancer cell line (HCC70) and non-tumorigenic breast epithelial cell line (MCF-10A) in co-culture systemsResultsIn vitro activity of anti-Mucin1 CAR-T cells that displayed a range of affinities for Mucin1 (27nM to 320nM) showed similar cytokine secretion levels and cytotoxicity against Mucin-1 expressing tumor cell lines (HCC70 and T47D). Robust anti-tumor activity was also demonstrated in vivo against large tumors (400~500 mm3) with relatively small numbers of CAR-T cells (0.5 x 106 CAR-T cells per mouse). In vivo expansion of CAR-T cells were observed in all scFv-CAR-T cases and accompanied by close to complete regression of tumors within 25 days post CAR-T cell injection. Of the 4 scFv CAR-Ts, 2H08 (with a Kd of 94nM) was tested for activity against normal breast epithelial cells. When 2H08-CAR-T was cocultured with a mixture of HCC70 and MCF-10A cells, they preferentially killed only the Mucin1 overexpressing HCC70 cells leaving MCF-10 cells intact.ConclusionsOur study demonstrates anti-tumor activity of a novel scFv-derived CAR-T recognizing Mucin1 and its effectiveness in large pre-established tumors in vivo. We also demonstrate that 2H08-CAR-T can distinguish between target overexpressing cancer cells and normal epithelial cells, which suggests that by toning down the affinity of CAR against antigen one can improve the safety profile of solid tumor antigen targeting CAR-T cell therapies.ReferenceCastellarin M, Sands C, Da T, Scholler J, Graham K, Buza E, Fraietta J, Zhao Y, June C. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight 2020; 5:e136012Ethics ApprovalAll experiments were done under protocols approved by the Institutional Animal Care and Use Committee (IACUC) (Study#LGME21-011).ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A140-A141
Author(s):  
David Mai ◽  
Omar Johnson ◽  
Carl June

BackgroundCAR-T cell therapy has demonstrated remarkable success in hematological malignancies but displays limited efficacy in solid tumors, which comprise most cancer cases. Recent studies suggest that CAR-T cell failure via T cell exhaustion is characterized by decreased surface CAR expression, cytotoxicity, and Th1 cytokine production, leading to reduced antitumor functionality.1 2 3 To address these issues, studies have turned to genetically knocking out or overexpressing targets associated with an exhaustion or effector phenotype, such as PD-1 knockout (KO) and c-Jun overexpression, among other candidates that are typically receptors or transcription factors.4 5 6 However, there are other underexplored factors that mediate various aspects of immune regulation. While genome-wide CRISPR screens may discover such factors, they are unlikely to reveal phenotypes for genes whose function is partially redundant, therefore promising candidates may be missed. Such candidates include post-transcriptional regulators (PTRs) that coordinate immune responses, which are less well-studied in the context of CAR-T cell function. We hypothesized that KO of these PTRs may increase CAR-T cell cytokine activity, phenotype, and persistence, potentially under long-term or exhaustion-inducing conditions, leading to increased tumor control. Ultimately, disruption of negative immune regulators could produce CAR-T cells with enhanced activity and persistence, narrowing the gap between efficacy in hematological and solid tumors.MethodsTo explore whether the disruption of two target PTRs improves solid tumor efficacy, we used CRISPR-Cas9 to genetically delete one or both PTRs in mesothelin-targeting human CAR-T cells and assayed their function in vitro and in vivo in NSG mice.ResultsWe show successful genetic deletion of these genes in post-thymic human T cells and that their disruption does not affect primary expansion (figure 1) or transduction efficiency (figure 2). These KO CAR-T cells display increased expression of co-stimulatory receptors and various cytokines (figure 3). While KO CAR-T cells are functionally similar to WT CAR-T cells in in vitro assays (figure 4), KO CAR-T cells demonstrate superior activity in vivo and can clear large, established tumors compared to WT CAR-T cells at low dose (figure 5).Abstract 131 Figure 1Expansion kinetics of KO CAR-T cellsAbstract 131 Figure 2Transduction efficiency and baseline phenotype of KO CAR-T cellsAbstract 131 Figure 3Costimulatory receptor and cytokine expression of KO CAR-T cellsAbstract 131 Figure 4In vitro cytotoxicity of KO CAR-T cellsAbstract 131 Figure 5In vivo activity of KO CAR-T cellsConclusionsThese results indicate that KO of our target PTRs may improve the potency of CAR-T cells in solid tumors and may have important implications on the development of effective solid-tumor cell therapies.ReferencesJE Wherry and M Kurachi, Molecular and cellular insights into T cell exhaustion, Nature Reviews Immunology 2015;15:486–499.EW Weber, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 2021;372:6537.S Kuramitsu et al. Induction of T cell dysfunction and NK-like T cell differentiation in vitro and in patients after CAR T cell treatment. Cell, in revision.BD Choi et al, CRISPR-Cas9 disruption of PD-1 enhances activity of university EGFRvIII CAR T cells in a preclinical model of human glioblastoma. Journal for ImmunoTherapy of Cancer 2019;7:304.RC Lynn et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 2019;576:293–300.LJ Rupp et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific Reports 2017;7:737.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A118-A118
Author(s):  
Eytan Breman ◽  
Ann-Sophie Walravens ◽  
Isabelle Gennart ◽  
Amelie Velghe ◽  
Thuy Nguyen ◽  
...  

BackgroundWhilst delivering impressive clinical efficacy in certain hematological malignancies, Chimeric Antigen Receptor (CAR) T cell therapy has yet to deliver significant clinical impact across a broader array of cancer indications. Armoring CAR T through the co-expression of immune modifying cytokines is an approach that may aid anti-cancer activity but is currently at an embryonic stage of development. In this study, the potential benefit of expressing IL-18 alongside a NKG2D CAR was assessed.MethodsA series of retroviral vectors encoding the NKG2D CAR (a fusion of NKG2D with CD3z), a cell surface tag to facilitate cell selection and tracking (truncated CD19) either with or without full length IL-18 were compared. In certain vectors, a single shRNA targeting CD3z was included to generate allogeneic CAR T versions. All transgenes were delivered as a single vector expressed under the control of the retroviral promoter with individual 2A elements ensuring equimolar levels of protein expression. T cells transduced with the individual vectors were challenged in vitro and in vivo to determine the impact of IL-18 upon NKG2D CAR directed function.ResultsArmored NKG2D CAR T cells that included the IL-18 transgene showed high levels of IL-18 secretion in culture and increased levels of interferon gamma secretion upon antigen challenge as compared to non-armored NKG2D CAR T cells. Armored NKG2D CAR T cells also showed prolonged sequential target cell killing as compared to non-armored CAR T versions. Importantly, in an in vivo stress test where the dose of non-armored NKG2D T cells was reduced to a level where minimal anti-tumor activity and survival above control was seen using an established THP-1 model, armored CAR T cells showed enhanced anti-tumor activity (as determined by bioluminescence) and overall survival. Interestingly, at high doses of armored CAR T cells, toxicity was seen in some tumor bearing models. This toxicity was abrogated by systemic infusion of human IL-18 binding protein (IL-18BP).ConclusionsArmoring NKG2D CAR T cells with IL-18 resulting in increased in vitro and in vivo target-dependent anti-tumor activity. The transient toxicity observed with high doses of the armored CAR T in tumor bearing models was eliminated by IL-18BP. Together, these observations imply that armoring NKG2D CAR T cells with IL-18 is likely to drive improved anti-tumor activity of the CAR T cell in line with previous publications1 2 while the presence of systemic IL-18BP3 should negate possible toxicities arising from high level constitutive expression of the cytokine.ReferencesChmielewski M, Abken H. Cell Reports 2017;21(11): 3205–32192.Hu B, Ren J, Luo Y, Keith B, Young R, Scholler J, Zhao Y, June C. Cell Reports 2017; 20(13): 3025–30333.Dinarello C, Novick D, Kim S, Kaplamski G. Frontiers in Immunology 2013;4;289


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Min Meng ◽  
Yi-chen Wu

Background. Chimeric antigen receptor-modified T cell (CAR-T) therapy has great potential for treating malignant tumors, especially hematological malignancies. However, the therapeutic effect of solid tumors is limited. One of the most important factors is the homing of CAR-T cells to tumor tissues in vivo. Method. a recombinant adeno-associated virus 2 (AAV2) subtype carrying the CCL19 gene was used to pretreat the tumor before the Glypican-3 (GPC3) CAR-T treatment. The tumor tissue continuously expressed CCL19 and analyzed the tumor-suppressive effect of AAV-CCL19 on GPC3 CAR-T by in vitro and in vivo experiments. Result. Under the chemotaxis of CCL19, CAR-T cells had a significant increase in the degree of tumor tissue infiltration; also, the antitumor effect in vitro was significantly enhanced. AAV-CCL19 combined with GPC3 CAR-T significantly increased the survival time of mice. The aforementioned results showed that the combination of AAV-CCL19 and GPC3 CAR-T cells effectively increased the ability of CAR-T cells to go home into the tumor tissue, making the CAR-T cell treatment more effective. Conclusion. This study is expected to solve the dilemma in treating CAR-T cell solid tumors and achieve better clinical results.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A129-A129
Author(s):  
Martin Hosking ◽  
Soheila Shirinbak ◽  
Joy Grant ◽  
Yijia Pan ◽  
Angela Gentile ◽  
...  

BackgroundChimeric antigen receptor (CAR)-T cells for solid tumors have shown modest effectiveness as compared to hematologic malignancies, a consequence of antigen heterogeneity, the immuno-suppressive tumor microenvironment (TME), limited cell persistence, and perhaps most notably, the trafficking of the CAR-T cell to the tumor itself. Early detection of CAR-T cells within a solid tumor has been associated with better outcomes across several clinical trials in diverse tumor settings, suggesting that strategies focused on enhancing CAR-T cell homing to and infiltration into the tumor can yield therapeutic benefit.MethodsHere, we demonstrate that following irradiation or exposure to common chemotherapy drugs, selected tumor cell lines (breast, ovarian, and prostate) specifically upregulate several chemokines, notably the CXCR2 ligand, interleukin (IL)-8, up to 4-fold over baseline control (e.g. 24ng/ml increased to 79ng/ml for SKOV3; 2.9ng/ml increased to 12.5ng/ml for MDA-MB-231). To leverage the upregulation of IL-8 as a mechanism of directing CAR-T cells to the tumor site, we initially engineered primary CAR-T cells to express CXCR2 and demonstrated functional migration, in a dose-dependent manner, to recombinant IL-8 in an in vitro transwell chemotaxis assay; maximal migration of approximately 2-fold over baseline was observed with 10ng/ml of rhIL-8. Similarly, supernatant from pre-conditioned tumor lines also elicited functional enhancements in migration (up to 4-fold specific migration). In addition, ovarian tumors were sub-optimally treated with paclitaxel in vivo, which promoted infiltration of CXCR2+ CAR-T cells and demonstrated enhanced tumor control.ResultsWe then incorporated these findings into our off-the-shelf, iPSC-derived CAR-T cell product platform. Induced pluripotent stem cells (iPSCs) were precisely engineered to co-express CAR and CXCR2 and subsequently differentiated to T cells to generate iPSC-derived CAR-T cells (CAR-iT cells). Like their primary CAR-T cell counterparts, functional chemotaxis of CXCR2+ CAR-iT cells was also observed in response to recombinant IL-8 and preconditioned tumor media. Importantly, CXCR2 expression did not limit CAR-dependent cytolytic function and the specificity of CAR-iT cells, underscoring the compatibility of this approach. Further in vitro and in vivo studies are ongoing and will be presented.ConclusionsCollectively, these data demonstrate that rational engineering of unique chemokine receptors to deliver the ideal chemokine/chemokine receptor match between tumors and effector cells can be leveraged to enhance tumor targeting and trafficking of CAR-iT cells for more effective treatment of solid tumors.Ethics ApprovalThese studies were approved by Fate Therapeutics Institutional Animal Care and Use Committee and were carried out in accordance with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


2021 ◽  
Vol 9 (6) ◽  
pp. e002140
Author(s):  
Giulia Pellizzari ◽  
Olivier Martinez ◽  
Silvia Crescioli ◽  
Robert Page ◽  
Ashley Di Meo ◽  
...  

BackgroundCancer immunotherapy with monoclonal antibodies and chimeric antigen receptor (CAR) T cell therapies can benefit from selection of new targets with high levels of tumor specificity and from early assessments of efficacy and safety to derisk potential therapies.MethodsEmploying mass spectrometry, bioinformatics, immuno-mass spectrometry and CRISPR/Cas9 we identified the target of the tumor-specific SF-25 antibody. We engineered IgE and CAR T cell immunotherapies derived from the SF-25 clone and evaluated potential for cancer therapy.ResultsWe identified the target of the SF-25 clone as the tumor-associated antigen SLC3A2, a cell surface protein with key roles in cancer metabolism. We generated IgE monoclonal antibody, and CAR T cell immunotherapies each recognizing SLC3A2. In concordance with preclinical and, more recently, clinical findings with the first-in-class IgE antibody MOv18 (recognizing the tumor-associated antigen Folate Receptor alpha), SF-25 IgE potentiated Fc-mediated effector functions against cancer cells in vitro and restricted human tumor xenograft growth in mice engrafted with human effector cells. The antibody did not trigger basophil activation in cancer patient blood ex vivo, suggesting failure to induce type I hypersensitivity, and supporting safe therapeutic administration. SLC3A2-specific CAR T cells demonstrated cytotoxicity against tumor cells, stimulated interferon-γ and interleukin-2 production in vitro. In vivo SLC3A2-specific CAR T cells significantly increased overall survival and reduced growth of subcutaneous PC3-LN3-luciferase xenografts. No weight loss, manifestations of cytokine release syndrome or graft-versus-host disease, were detected.ConclusionsThese findings identify efficacious and potentially safe tumor-targeting of SLC3A2 with novel immune-activating antibody and genetically modified cell therapies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A121-A121
Author(s):  
Nina Chu ◽  
Michael Overstreet ◽  
Ryan Gilbreth ◽  
Lori Clarke ◽  
Christina Gesse ◽  
...  

BackgroundChimeric antigen receptors (CARs) are engineered synthetic receptors that reprogram T cell specificity and function against a given antigen. Autologous CAR-T cell therapy has demonstrated potent efficacy against various hematological malignancies, but has yielded limited success against solid cancers. MEDI7028 is a CAR that targets oncofetal antigen glypican-3 (GPC3), which is expressed in 70–90% of hepatocellular carcinoma (HCC), but not in normal liver tissue. Transforming growth factor β (TGFβ) secretion is increased in advanced HCC, which creates an immunosuppressive milieu and facilitates cancer progression and poor prognosis. We tested whether the anti-tumor efficacy of a GPC3 CAR-T can be enhanced with the co-expression of dominant-negative TGFβRII (TGFβRIIDN).MethodsPrimary human T cells were lentivirally transduced to express GPC3 CAR both with and without TGFβRIIDN. Western blot and flow cytometry were performed on purified CAR-T cells to assess modulation of pathways and immune phenotypes driven by TGFβ in vitro. A xenograft model of human HCC cell line overexpressing TGFβ in immunodeficient mice was used to investigate the in vivo efficacy of TGFβRIIDN armored and unarmored CAR-T. Tumor infiltrating lymphocyte populations were analyzed by flow cytometry while serum cytokine levels were quantified with ELISA.ResultsArmoring GPC3 CAR-T with TGFβRIIDN nearly abolished phospho-SMAD2/3 expression upon exposure to recombinant human TGFβ in vitro, indicating that the TGFβ signaling axis was successfully blocked by expression of the dominant-negative receptor. Additionally, expression of TGFβRIIDN suppressed TGFβ-driven CD103 upregulation, further demonstrating attenuation of the pathway by this armoring strategy. In vivo, the TGFβRIIDN armored CAR-T achieved superior tumor regression and delayed tumor regrowth compared to the unarmored CAR-T. The armored CAR-T cells infiltrated HCC tumors more abundantly than their unarmored counterparts, and were phenotypically less exhausted and less differentiated. In line with these observations, we detected significantly more interferon gamma (IFNγ) at peak response and decreased alpha-fetoprotein in the serum of mice treated with armored cells compared to mice receiving unarmored CAR-T, demonstrating in vivo functional superiority of TGFβRIIDN armored CAR-T therapy.ConclusionsArmoring GPC3 CAR-T with TGFβRIIDN abrogates the signaling of TGFβ in vitro and enhances the anti-tumor efficacy of GPC3 CAR-T against TGFβ-expressing HCC tumors in vivo, proving TGFβRIIDN to be an effective armoring strategy against TGFβ-expressing solid malignancies in preclinical models.Ethics ApprovalThe study was approved by AstraZeneca’s Ethics Board and Institutional Animal Care and Use Committee (IACUC).


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A234-A234
Author(s):  
Rebecca Larson ◽  
Michael Kann ◽  
Stefanie Bailey ◽  
Nicholas Haradhvala ◽  
Kai Stewart ◽  
...  

BackgroundChimeric Antigen Receptor (CAR) therapy has had a transformative impact on the treatment of hematologic malignancies1–6 but success in solid tumors remains elusive. We hypothesized solid tumors have cell-intrinsic resistance mechanisms to CAR T-cell cytotoxicity.MethodsTo systematically identify resistance pathways, we conducted a genome-wide CRISPR knockout screen in glioblastoma cells, a disease where CAR T-cells have had limited efficacy.7 8 We utilized the glioblastoma cell line U87 and targeted endogenously expressed EGFR with CAR T-cells generated from 6 normal donors for the screen. We validated findings in vitro and in vivo across a variety of human tumors and CAR T-cell antigens.ResultsLoss of genes in the interferon gamma receptor (IFNγR) signaling pathway (IFNγR1, JAK1, JAK2) rendered U87 cells resistant to CAR T-cell killing in vitro. IFNγR1 knockout tumors also showed resistance to CAR T cell treatment in vivo in a second glioblastoma line U251 in an orthotopic model. This phenomenon was irrespective of CAR target as we also observed resistance with IL13Ralpha2 CAR T-cells. In addition, resistance to CAR T-cell cytotoxicity through loss of IFNγR1 applied more broadly to solid tumors as pancreatic cell lines targeted with either Mesothelin or EGFR CAR T-cells also showed resistance. However, loss of IFNγR signaling did not impact sensitivity of liquid tumor lines (leukemia, lymphoma or multiple myeloma) to CAR T-cells in vitro or in an orthotopic model of leukemia treated with CD19 CAR. We isolated the effects of decreased cytotoxicity of IFNγR1 knockout glioblastoma tumors to be cancer-cell intrinsic because CAR T-cells had no observable differences in proliferation, activation (CD69 and LFA-1), or degranulation (CD107a) when exposed to wildtype versus knockout tumors. Using transcriptional profiling, we determined that glioblastoma cells lacking IFNγR1 had lower upregulation of cell adhesion pathways compared to wildtype glioblastoma cells after exposure to CAR T-cells. We found that loss of IFNγR1 reduced CAR T-cell binding avidity to glioblastoma.ConclusionsThe critical role of IFNγR signaling for susceptibility of solid tumors to CAR T-cells is surprising given that CAR T-cells do not require traditional antigen-presentation pathways. Instead, in glioblastoma tumors, IFNγR signaling was required for sufficient adhesion of CAR T-cells to mediate productive cytotoxicity. Our work demonstrates that liquid and solid tumors differ in their interactions with CAR T-cells and suggests that enhancing T-cell/tumor interactions may yield improved responses in solid tumors.AcknowledgementsRCL was supported by T32 GM007306, T32 AI007529, and the Richard N. Cross Fund. ML was supported by T32 2T32CA071345-21A1. SRB was supported by T32CA009216-38. NJH was supported by the Landry Cancer Biology Fellowship. JJ is supported by a NIH F31 fellowship (1F31-MH117886). GG was partially funded by the Paul C. Zamecnik Chair in Oncology at the Massachusetts General Hospital Cancer Center and NIH R01CA 252940. MVM and this work is supported by the Damon Runyon Cancer Research Foundation, Stand Up to Cancer, NIH R01CA 252940, R01CA238268, and R01CA249062.ReferencesMaude SL, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439–448.Neelapu SS, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531–2544.Locke FL, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. The Lancet Oncology 2019;20:31–42.Schuster SJ, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017;377:2545–2554.Wang M, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020;382:1331–1342.Cohen AD, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019;129:2210–2221.Bagley SJ, et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro-oncology 2018;20:1429–1438.Choi BD, et al. Engineering chimeric antigen receptor T cells to treat glioblastoma. J Target Ther Cancer 2017;6:22–25.Ethics ApprovalAll human samples were obtained with informed consent and following institutional guidelines under protocols approved by the Institutional Review Boards (IRBs) at the Massachusetts General Hospital (2016P001219). Animal work was performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) (2015N000218 and 2020N000114).


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3931-3931
Author(s):  
Martina Fontaine ◽  
Benjamin Demoulin ◽  
Simon Bornschein ◽  
Susanna Raitano ◽  
Steve Lenger ◽  
...  

Background The Natural Killer Group 2D (NKG2D) receptor is a NK cell activating receptor that binds to eight different ligands (NKG2DL) commonly over-expressed in cancer, including MICA and MICB. The product candidate CYAD-01 are chimeric antigen receptor (CAR) T-cells encoding the full length human NKG2D fused to the intracellular domain of CD3ζ. Data from preclinical models have shown that CYAD-01 cells specifically target solid and hematological tumors. Encouraging preliminary results from the Phase I clinical trial THINK, assessing CYAD-01 safety, showed initial signals of objective clinical responses in patients with r/r AML and MDS. The clinical development of CAR T-cells has been limited by several challenges including achieving sufficient numbers of cells for clinical application. We have previously shown that NKG2D ligands are transiently expressed on activated T cells and that robust cell yields are generated through the addition of a blocking antibody and a PI3K inhibitor during cell manufacture. Here, we investigated the ability of an optimized short hairpin RNA (shRNA) technology to modulate NKG2DL expression on CYAD-01 cells and to determine if there is an increase in the anti-tumor activity of NKG2D-based CAR T-cells (termed CYAD-02). Methods Molecular and cellular analyses identified MICA and MICB as the key NKG2DL expressed on activated T-cells and highly likely to participate in driving fratricide. In silico analysis and in vitro screening allowed the identification of a single shRNA targeting the conserved regions of MICA and MICB, thus downregulating both MICA and MICB expression. The selected shRNA was incorporated in the NKG2D-based CAR vector, creating the next-generation NKG2D-based CAR T-cell candidate, CYAD-02. In addition, truncated versions of the NKG2D receptor were generated to explore the mechanisms of action of NKG2D receptor activity in vivo. The in vivo persistence and anti-tumor activity of CYAD-02 cells was evaluated in an aggressive preclinical model of AML. Results Injection of CAR T-cells bearing truncated forms of the NKG2D-CAR in immunosuppressed mice resulted in similar persistence to the control T-cells. In contrast, CYAD-01 cells had reduced persistence, suggesting that the recognition of the NKG2DL by the NKG2D receptor could contribute to this effect. Analysis of cell phenotype upon CAR T-cell activation showed that MICA and MICB were transiently expressed on T-cells during manufacturing. These results collectively suggested that downregulating MICA and MICB expression in CYAD-01 cells could be a mean to increase CAR T-cell persistence in vivo. Candidate shRNA were screened for efficient targeting of both MICA and MICB at the mRNA and protein level. T-cells transduced with a single vector encoding for the NKG2D-based CAR and the selected shRNA targeting MICA and MICB (CYAD-02) demonstrated 3-fold increased expansion during in vitro culture in the absence of the blocking antibody used to increase cell yield during manufacture. When injected into immunosuppressed mice, CYAD-02 cells generated with the Optimab process showed 10-fold higher engraftment one week after injection and potent anti-tumor activity resulting in 2.6-fold increase of mouse survival in an aggressive AML model. Conclusions By using a single vector encoding the NKG2D-based CAR next to a shRNA targeting MICA and MICB and combined with improved cell culture methods, CYAD-02, the next-generation of NKG2D-based CAR T-cells, demonstrated enhanced in vivo persistence and anti-tumor activity. Following FDA acceptance of the IND application, a Phase 1 dose-escalation trial evaluating the safety and clinical activity of CYAD-02 for the treatment of r/r AML and MDS is scheduled to start in early 2020. Disclosures Fontaine: Celyad: Employment. Demoulin:Celyad: Employment. Bornschein:Celyad: Employment. Raitano:Celyad: Employment. Machado:Horizon Discovery: Employment. Moore:Avvinity Therapeutics: Employment, Other: Relationship at the time the work was performed; Horizon Discovery: Employment, Equity Ownership, Other: Relationship at the time the work was performed; Centauri Therapeutics: Consultancy, Other: Current relationship. Sotiropoulou:Celyad: Employment. Gilham:Celyad: Employment.


Sign in / Sign up

Export Citation Format

Share Document