scholarly journals A Simple Algorithm for Computing the Zone of a Line in an Arrangement of Lines

2022 ◽  
pp. 79-86
Author(s):  
Haitao Wang
2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


Author(s):  
Zhengyan Chang ◽  
Zhengwei Zhang ◽  
Qiang Deng ◽  
Zheren Li

The artificial potential field method is usually applied to the path planning problem of driverless cars or mobile robots. For example, it has been applied for the obstacle avoidance problem of intelligent cars and the autonomous navigation system of storage robots. However, there have been few studies on its application to intelligent bridge cranes. The artificial potential field method has the advantages of being a simple algorithm with short operation times. However, it is also prone to problems of unreachable targets and local minima. Based on the analysis of the operating characteristics of bridge cranes, a two-dimensional intelligent running environment model of a bridge crane was constructed in MATLAB. According to the basic theory of the artificial potential field method, the double-layer artificial potential field method was deduced, and the path and track fuzzy processing method was proposed. These two methods were implemented in MATLAB simulations. The results showed that the improved artificial potential field method could avoid static obstacles efficiently.


2021 ◽  
Vol 13 ◽  
pp. 175883592199298
Author(s):  
Orthi Shahzad ◽  
Nicola Thompson ◽  
Gerry Clare ◽  
Sarah Welsh ◽  
Erika Damato ◽  
...  

Ocular immune-related adverse events (IrAEs) associated with use of checkpoint inhibitors (CPIs) in cancer therapeutics are relatively rare, occurring in approximately 1% of treated patients. Recognition and early intervention are essential because the degree of tissue damage may be disproportionate to the symptoms, and lack of appropriate treatment risks permanent loss of vision. International guidelines on managing ocular IrAEs provide limited advice only. Importantly, local interventions can be effective and may avoid the need for systemic corticosteroids, thereby permitting the continuation of CPIs. We present a single institution case series of eight affected patients managed by our multidisciplinary team. Consistent with previously published series and case reports, we identified anterior uveitis as the most common ocular IrAE associated with CPIs requiring intervention. Based on our experience, as well as published guidance, we generated a simple algorithm to assist clinicians efficiently manage patients developing ocular symptoms during treatment with CPIs. In addition, we make recommendations for optimising treatment of uveitis and address implications for ongoing CPI therapy.


2021 ◽  
Vol 9 (2) ◽  
pp. 1-19
Author(s):  
Z. Li ◽  
A. Vetta

We consider the fair division of indivisible items using the maximin shares measure. Recent work on the topic has focused on extending results beyond the class of additive valuation functions. In this spirit, we study the case where the items form a hereditary set system. We present a simple algorithm that allocates each agent a bundle of items whose value is at least 0.3666 times the maximin share of the agent. This improves upon the current best known guarantee of 0.2 due to Ghodsi et al. The analysis of the algorithm is almost tight; we present an instance where the algorithm provides a guarantee of at most 0.3738. We also show that the algorithm can be implemented in polynomial time given a valuation oracle for each agent.


2018 ◽  
Vol 27 (4) ◽  
pp. 643-666 ◽  
Author(s):  
J. LENGLER ◽  
A. STEGER

One of the easiest randomized greedy optimization algorithms is the following evolutionary algorithm which aims at maximizing a function f: {0,1}n → ℝ. The algorithm starts with a random search point ξ ∈ {0,1}n, and in each round it flips each bit of ξ with probability c/n independently at random, where c > 0 is a fixed constant. The thus created offspring ξ' replaces ξ if and only if f(ξ') ≥ f(ξ). The analysis of the runtime of this simple algorithm for monotone and for linear functions turned out to be highly non-trivial. In this paper we review known results and provide new and self-contained proofs of partly stronger results.


Sign in / Sign up

Export Citation Format

Share Document