scholarly journals Heart rate variability and recovery following maximal exercise in endurance athletes and physically active individuals

2020 ◽  
Vol 45 (10) ◽  
pp. 1138-1144 ◽  
Author(s):  
Robert F. Bentley ◽  
Emily Vecchiarelli ◽  
Laura Banks ◽  
Patric E.O. Gonçalves ◽  
Scott G. Thomas ◽  
...  

The purpose of this study was to determine potential adverse cardiac effects of chronic endurance training by comparing sympathovagal modulation via heart rate variability (HRV) and heart rate recovery (HRR) in middle-aged endurance athletes (EA) and physically active individuals (PA) following maximal exercise. Thirty-six (age, 53 ± 5 years) EA and 19 (age, 56 ± 5 years) PA were recruited to complete a 2-week exercise diary and graded exercise to exhaustion. Time domain and power spectral HRV analyses were completed on recorded R-R intervals. EA had a greater HRR slope following exercise (95% confidence interval, 0.0134–0.0138 vs. 0.0101–0.0104 beats/s; p < 0.001). While EA had greater HRR at 1–5 min after exercise (all p < 0.01), PA and EA did not differ when expressed as a percentage of baseline heart rate (130 ± 19 vs. 139 ± 19; p = 0.2). Root mean square of successive differences in R-R intervals (rest and immediately after exercise) were elevated in EA (p < 0.05). Low-frequency (LF) and high-frequency (HF) spectral components were nonsignificantly elevated after exercise (p = 0.045–0.147) in EA while LF/HF was not different (p = 0.529–0.986). This data suggests greater HRR in EA may arise in part due to a lower resting HR. While nonsignificant elevations in HF and LF in EA produces a LF/HF similar to PA, absolute spectral component modulation differed. These observations require further exploration. Novelty Acute effects of exercise on HRV in EA compared with a relevant control group, PA, are unknown. EA had greater HRR and nonsignificant elevations in LF and HF compared with PA, yet LF/HF was not different. Future work should explore the implications of this observation.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Emily Bechke ◽  
Brian Kliszczewicz ◽  
Cherilyn McLester ◽  
Mark Tillman ◽  
Michael Esco ◽  
...  

Abstract The purpose of this study was to examine the relationship of a single day measure of heart rate variability (HRV), and the averaged baseline measures of HRV to heart rate recovery (HRR) following maximal exercise. Thirty females (22.9 ± 3.2 years, 64.8 ± 8.4 kg) completed four visits (V1–V4), where a 10-min HRV was recorded. Upon completing the V4 recording, a treadmill graded exercise test (GXT) was performed, followed by a 5-min active cool down. HRV was assessed through time domain measures [natural log of root mean square of successive R–R differences (lnRMSSD) and standard deviation of normal to normal intervals (lnSDNN)] and natural log frequency domain measures [low frequency (lnLF) and high frequency (lnHF)]. Variables collected over V1–V4 were measured as; day of (DO) GXT, 3 day (AV3), and 4 day average (AV4). HRR was calculated as the maximal HR achieved minus the HR at: 30-s (HRR30), 1-min (HRR1), 2-min (HRR2), 3-min (HRR3), 4-min (HRR4) or 5-min (HRR5) of recovery. Pearson’s Product correlations revealed significant correlations (P = < 0.05) between all HRVDO measures to each HRR measure and are presented in ranges: lnSDNN (r = 0.442–0.522), lnRMSSD (r = 0.458–0.514), lnLF (r = 0.368–0.469), lnHF (r = 0.422–0.493). For HRVAV3, lnRMSSDAV3 and HRR1 were positively correlated (r = 0.390, P = 0.033). Last, HRVAV4 showed positive relationships (P = < 0.05) between lnRMSSDAV4 and HRR30 (r = 0.365, P = 0.048); and for HRR1 and lnSDNNAV4 (r = 0.400, P = 0.029), lnRMSSDAV4 (r = 0.442, P = 0.014), and lnHFAV4 (r = 0.368, P = 0.045); and lnRMSSDAV4 and HRR3 (r = 0.381, P = 0.038). Within the current study HRVDO displayed the strongest correlations to HRR therefore, averaged resting HRV measures do not strengthen the prediction of cardiovascular recovery following a GXT in this population.


Author(s):  
Angelo Cataldo ◽  
Antonino Bianco ◽  
Antonio Paoli ◽  
Dario Cerasola ◽  
Saverio Alagna ◽  
...  

Relationships between heart rate recovery after exercise (HRR, baseline heart rate variability measures (HRV), and time to perform a 10Km running trial (t10Km) were evaluated in "master" athletes of endurance to assess whether the measured indexes may be useful for monitoring the training status of the athletes. Ten “master” athletes of endurance, aged 40-60 years, were recruited. After baseline measures of HRV, the athletes performed a graded maximal test on treadmill and HRR was measured at 1 and 2 minutes from recovery. Subsequently they performed a 10Km running trial and t10Km was related to HRV and HRR indexes. The time to perform a 10Km running trial was significantly correlated with baseline HRV indexes. No correlation was found between t10Km and HRR. Baseline HRV measures, but not HRR, were significantly correlated with the time of performance on 10km running in “master” athletes. The enhanced parasympathetic function at rest appears to be a condition to a better performance on 10km running. HRV can be simple and useful measurements for monitoring the training stratus of athletes and their physical condition in proximity of a competition.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Joanne W. Y. Chung ◽  
Vincent C. M. Yan ◽  
Hongwei Zhang

Aim.To summarize all relevant trials and critically evaluate the effect of acupuncture on heart rate variability (HRV).Method.This was a systematic review with meta-analysis. Keyword search was conducted in 7 databases for randomized controlled trials (RCTs). Data extraction and risk of bias were done.Results.Fourteen included studies showed a decreasing effect of acupuncture on low frequency (LF) and low frequency to high frequency ratio (LF/HF ratio) of HRV for nonhealthy subjects and on normalized low frequency (LF norm) for healthy subjects. The overall effect was in favour of the sham/control group for high frequency (HF) in nonhealthy subjects and for normalized high frequency (HF norm) in healthy subjects. Significant decreasing effect on HF and LF/HF ratio of HRV when acupuncture was performed on ST36 among healthy subjects and PC6 among both healthy and nonhealthy subjects, respectively.Discussion.This study partially supports the possible effect of acupuncture in modulating the LF of HRV in both healthy and nonhealthy subjects, while previous review reported that acupuncture did not have any convincing effect on HRV in healthy subjects. More published work is needed in this area to determine if HRV can be an indicator of the therapeutic effect of acupuncture.


2019 ◽  
Vol 18 (8) ◽  
pp. 658-666 ◽  
Author(s):  
Ching-Hsiang Chen ◽  
Kuo-Sheng Hung ◽  
Yu-Chu Chung ◽  
Mei-Ling Yeh

Background: Stroke, a medical condition that causes physical disability and mental health problems, impacts negatively on quality of life. Post-stroke rehabilitation is critical to restoring quality of life in these patients. Objectives: This study was designed to evaluate the effect of a mind–body interactive qigong intervention on the physical and mental aspects of quality of life, considering bio-physiological and mental covariates in subacute stroke inpatients. Methods: A randomized controlled trial with repeated measures design was used. A total of 68 participants were recruited from the medical and rehabilitation wards at a teaching hospital in northern Taiwan and then randomly assigned either to the Chan-Chuang qigong group, which received standard care plus a 10-day mind–body interactive exercise program, or to the control group, which received standard care only. Data were collected using the National Institutes of Health Stroke Scale, Hospital Anxiety and Depression Scale, Short Form-12, stroke-related neurologic deficit, muscular strength, heart rate variability and fatigue at three time points: pre-intervention, halfway through the intervention (day 5) and on the final day of the intervention (day 10). Results: The results of the mixed-effect model analysis showed that the qigong group had a significantly higher quality of life score at day 10 ( p<0.05) than the control group. Among the covariates, neurologic deficit ( p=0.04), muscle strength ( p=0.04), low frequency to high frequency ratio ( p=0.02) and anxiety ( p=0.04) were significantly associated with changes in quality of life. Conversely, heart rate, heart rate variability (standard deviation of normal-to-normal intervals, low frequency and high frequency), fatigue and depression were not significantly associated with change in quality of life ( p >0.05). Conclusions: This study supports the potential benefits of a 10-day mind–body interactive exercise (Chan-Chuang qigong) program for subacute stroke inpatients and provides information that may be useful in planning adjunctive rehabilitative care for stroke inpatients.


2017 ◽  
Vol 04 (02) ◽  
pp. 108-113
Author(s):  
Mohit Mittal ◽  
Radhakrishnan Muthuchellappan ◽  
G. Umamaheswara Rao ◽  
K. Kavyashree ◽  
K. Vishnuprasad

Abstract Background: Impaired autonomic function (AF) can result in adverse cardiovascular events during the perioperative period. Literature suggests that patients with intracranial space-occupying lesions experience impaired AF depending on the site of tumour and associated raised intracranial pressure (ICP). The complex interaction between general anaesthetics, AF and intracranial tumours with raised ICP has not been extensively studied. Objective: This study was aimed at evaluating the cardiac AF (in terms of heart rate variability [HRV]) in patients undergoing surgery for supratentorial tumours, at baseline and at different propofol effect site concentrations (Ce) during anaesthetic induction and the results were compared with patients undergoing non-cranial surgeries. Materials and Methods: In this prospective observational study, consecutive adult patients undergoing surgeries for supratentorial tumour (study group) and brachial plexus injury (control group) were recruited. Electrocardiogram was recorded for 5 min at three time points – before propofol induction, at propofol Ce 2 μg/ml and at Ce 4 μg/ml. Results: Forty-five patients were recruited, 24 in study group and 21 in control group. In spite of similar baseline heart rate and blood pressure, low frequency (LF), high frequency (HF) and total power were significantly higher in control group. Baseline LF/HF, though higher in patients with intracranial tumour (craniotomy: 2.2 ± 2.2, control: 1.2 ± 1.1), was not significantly different between the two groups (P = 0.197). HRV variables in both the groups changed the same way in response to the increasing propofol Ce. Conclusion: HRV measurements were significantly different at baseline between the two groups. Following propofol administration, haemodynamic changes and HRV changes were similar in both the groups and also between the two groups.


1996 ◽  
Vol 271 (2) ◽  
pp. H455-H460 ◽  
Author(s):  
K. P. Davy ◽  
N. L. Miniclier ◽  
J. A. Taylor ◽  
E. T. Stevenson ◽  
D. R. Seals

Coronary heart disease (CHD) and cardiac sudden death (CSD) incidence accelerates after menopause, but the incidence is lower in physically active versus less active women. Low heart rate variability (HRV) is a risk factor for CHD and CSD. The purpose of the present investigation was to test the hypothesis that HRV at rest is greater in physically active compared with less active postmenopausal women. If true, we further hypothesized that the greater HRV in the physically active women would be closely associated with an elevated spontaneous cardiac baroreflex sensitivity (SBRS). HRV (both time and frequency domain measures) and SBRS (sequence method) were measured during 5-min periods of controlled frequency breathing (15 breaths/min) in the supine, sitting, and standing postures in 9 physically active postmenopausal women (age = 53 +/- 1 yr) and 11 age-matched controls (age = 56 +/- 2 yr). Body weight, body mass index, and body fat percentage were lower (P < 0.01) and maximal oxygen uptake was higher (P < 0.01) in the physically active group. The standard deviation of the R-R intervals (time domain measure) was higher in all postures in the active women (P < 0.05) as were the high-frequency, low-frequency, and total power of HRV. SBRS also was higher (P < 0.05) in the physically active women in all postures and accounted for approximately 70% of the variance in the high-frequency power of HRV (P < 0.05). The results of the present investigation indicate that physically active postmenopausal women demonstrate higher levels of HRV compared with age-matched, less active women. Furthermore, SBRS accounted for the majority of the variance in the high-frequency power of HRV, suggesting the possibility of a mechanistic link with cardiac vagal modulation of heart rate. Our findings may provide insight into a possible cardioprotective mechanism in physically active postmenopausal women.


1995 ◽  
Vol 268 (6) ◽  
pp. H2239-H2245 ◽  
Author(s):  
D. R. Grimm ◽  
R. E. DeMeersman ◽  
R. P. Garofano ◽  
A. M. Spungen ◽  
W. A. Bauman

This study investigated heart rate variability (HRV) in individuals with quadriplegia who have disruption of autonomic control of the heart. Seven male subjects with neurological complete quadriplegia and seven with incomplete quadriplegia were studied at rest and during provocation. HRV was measured by power spectral analysis using a fast Fourier transform. Two spectral components were generated: 1) the high-frequency (HF) peak, a reflection of parasympathetic activity, and 2) the low-frequency (LF) peak, primarily sympathetic activity with some parasympathetic input. Results of the provocative maneuvers were grouped into one composite variable. Significant differences in the LF spectral component were found between the groups with complete and incomplete lesions in the supine position and after provocation (LF supine: P = 0.01; LF provocation: P = 0.002). After provocation, significant differences were demonstrated in the HF spectral component between these groups (P = 0.005). In contrast to previous findings, a LF component in subjects with complete quadriplegia was observed; this LF component decreased after provocation, suggesting the parasympathetic component withdrew during stressful maneuvers. There also appeared to be general downregulation of parasympathetic activity to the heart in subjects with complete quadriplegia. The presence of an increased LF spectral component during provocation in those with incomplete lesions implies sympathetic stimulation of the heart and may be used as a marker of sympathetic activity in individuals with quadriplegia.


2008 ◽  
Vol 17 (6) ◽  
pp. 575-583 ◽  
Author(s):  
Shih-Fong Huang ◽  
Po-Yi Tsai ◽  
Wen-Hsu Sung ◽  
Chih-Yung Lin ◽  
Tien-Yow Chuang

Sympathovagal modulation during immersion in a virtual environment is an important influence on human performance of a task. The aim of this study is to investigate sympathovagal modulation using heart rate variability and perceived exertion during exercise in a virtual reality (VR) environment. Sixteen young healthy volunteers were tested while using a stationary bicycle and maintained at an anaerobic threshold intensity for exercise sessions of approximately 10 min duration. Four randomized viewing alternatives were provided including desktop monitor, projector, head mounted device (HMD), and no simulation display. The “no simulation display” served as the control group. A quick ramp exercise test was conducted and maintained at an anaerobic threshold intensity for each session to evaluate power spectral density and rating of perceived exertion (RPE). The sampled heart rate data were rearranged by cubic spline interpolation into power spectrums spanning the ultra-low frequency (ULF) to high frequency (HF) range. A significant difference was found between the no-display and projector groups for total power (TP) and very low frequency (VLF) components. In particular, there was a significant difference when comparing HMD and no-display exercise RPE curves within 6 min of cycling and at the termination of the exercise. A significant difference was also achieved in projector vs. control group comparison at the termination of the exercise. Our results indicate that the use of HMD and the projected VR during cycling can reduce the TP and VLF power spectral density through a proposed decrease in the renin-angiotensin system, with the implication that this humoral effect may enable anaerobic exercise for longer durations through a reduction in sympathetic tone and subsequent increased blood flow to the muscles.


2006 ◽  
Vol 291 (1) ◽  
pp. H459-H466 ◽  
Author(s):  
Arto J. Hautala ◽  
Tuomo Rankinen ◽  
Antti M. Kiviniemi ◽  
Timo H. Mäkikallio ◽  
Heikki V. Huikuri ◽  
...  

The determinants of heart rate (HR) recovery after exercise are not well known, although attenuated HR recovery is associated with an increased risk of cardiovascular mortality. Because acetylcholine receptor subtype M2 (CHRM2) plays a key role in the cardiac chronotropic response, we tested the hypothesis that, in healthy individuals, the CHRM2 gene polymorphisms might be associated with HR recovery 1 min after the termination of a maximal exercise test, both before and after endurance training. The study population consisted of sedentary men and women ( n = 95, 42 ± 5 yr) assigned to a training ( n = 80) or control group ( n = 15). The study subjects underwent a 2-wk laboratory-controlled endurance training program, which included five 40-min sessions/wk at 70–80% of maximal HR. HR recovery differed between the intron 5 rs324640 genotypes at baseline (C/C, −33 ± 10; C/T, −33 ± 7; and T/T, −40 ± 11 beats/min, P = 0.008). Endurance training further strengthened the association: the less common C/C homozygotes showed 6 and 12 beats/min lower HR recovery than the C/T heterozygotes or the T/T homozygotes ( P = 0.001), respectively. A similar association was found between A/T transversion at the 3′-untranslated region of the CHRM2 gene and HR recovery at baseline ( P = 0.025) and after endurance training ( P = 0.005). These data suggest that DNA sequence variation at the CHRM2 locus is a potential modifier of HR recovery in the sedentary state and after short-term endurance training in healthy individuals.


2014 ◽  
Vol 39 (8) ◽  
pp. 969-975 ◽  
Author(s):  
Justin P. Guilkey ◽  
Matthew Overstreet ◽  
Bo Fernhall ◽  
Anthony D. Mahon

The purpose of this study was to examine the influence of postexercise parasympathetic modulation, measured by heart rate variability (HRV), on heart rate recovery (HRR) in boys (n = 13, 10.1 ± 0.8 years) and men (n = 13, 23.9 ± 1.5 years) following maximal and submaximal exercise. Subjects completed 10 min of supine rest, followed by graded exercise on a cycle ergometer to maximal effort. On a separate day, subjects exercised at an intensity equivalent to ventilatory threshold. Immediately following both exercise bouts, 1-min HRR was assessed in the supine position. HRV was analyzed under controlled breathing during the final 5 min of rest and recovery in the time and frequency domains and transformed to natural log (ln) values. Boys had a greater 1-min HRR than men following maximal (58 ± 8 vs. 47 ± 11 beats·min−1) and submaximal (59 ± 8 vs. 47 ± 15 beats·min−1) exercise (p < 0.05). Following maximal exercise, boys had greater ln root mean square successive differences in R-R intervals (2.52 ± 0.95 ms), ln standard deviation of NN intervals (3.34 ± 0.57 ms), ln high-frequency power (4.32 ± 2.00 ms2), and ln low-frequency power (4.98 ± 1.17 ms2) than men (1.33 ± 0.37 ms, 2.52 ± 0.24 ms, 1.32 ± 1.06 ms2 and 2.80 ± 0.74 ms2, respectively) (p < 0.05). There were no differences in any HRV variables between groups following submaximal exercise (p > 0.05). In conclusion, it appears that greater parasympathetic modulation accounts for greater HRR following maximal exercise in boys versus men. Although submaximal HRR was greater in boys, parasympathetic responses were similar between groups.


Sign in / Sign up

Export Citation Format

Share Document