scholarly journals Inclusion of sprints during moderate-intensity continuous exercise enhances post-exercise fat oxidation in young males

Author(s):  
Bruno Nicanor Mello-Silva ◽  
Gabriel Völz Protzen ◽  
Fabricio Del Vecchio

To assess the physiological demand of including high-intensity efforts during continuous exercise, we designed a randomized crossover study, where 12 physically active young males executed three different exercises in random order: FATmax - continuous exercise at the highest fat oxidation zone (FATmax); 2min-130% - FATmax interspersed by a 2-min bout at 130% of the maximal oxygen uptake associated intensity (iV̇O2max); and 20s:10s-170% - FATmax interspersed by four 20-s bouts at 170%iV̇O2max interpolated by 10s of passive recovery. We measured oxygen uptake (V̇O2), blood lactate concentration ([LAC]), respiratory exchange rate (RER), fat and carbohydrate (CHO) oxidation. For statistical analyses, repeated measures ANOVA was applied. Although no differences were found for average V̇O2 or carbohydrate oxidation rate, the post-exercise fat oxidation rate was 37.5% and 50% higher during 2min-130% and 20s:10s-170%, respectively, compared to FATmax, which also presented lower values of RER during exercise compared to 2min-130% and 20s:10s-170% (p<0.001 in both), and higher values post-exercise (p=0.04 and p=0.002, respectively). The [LAC] was higher during exercise when high-intensity bouts were applied (p<0.001 for both) and higher post-exercise on the intermittent one compared to FATmax (p=0.016). The inclusion of high-intensity efforts during moderate-intensity continuous exercise promoted higher physiological demand and post-exercise fat oxidation. Novelty bullets • The inclusion of 2-min efforts modifies continuous exercise demands • Maximal efforts can increase post-exercise fat oxidation • 2-min maximal efforts, continuous or intermittent, presents similar demands

2019 ◽  
Vol 119 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Flávia C. Pimenta ◽  
Fábio Tanil Montrezol ◽  
Victor Zuniga Dourado ◽  
Luís Fernando Marcelino da Silva ◽  
Gabriela Alves Borba ◽  
...  

Author(s):  
Shudong Tian ◽  
Hong Mou ◽  
Qun Fang ◽  
Xiaoxiao Zhang ◽  
Fanying Meng ◽  
...  

This study examined the immediate and sustained effects of high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) on cognitive flexibility in young adults. Participants (n = 56) engaged in (1) a session of HIIE, involving 10 sets of one-minute treadmill running at an intensity targeting 90% heart rate reserve (HRR) interspersed with self-paced walking at 50% HRR; (2) a session of MICE, involving a 20 min treadmill running at an intensity of 40–59% HRR; and (3) a control session, involving 24 min of resting on separate days in a counterbalanced order. Using a more-odd shifting task, cognitive flexibility was assessed before the intervention (t0), immediately after the session (t1), and then at 30 min (t2) after the session. During the more-odd shifting task, the switch cost of response time (RT) immediately after the HIIE was significantly reduced compared to that before exercise, suggesting beneficial effects on cognitive flexibility. Additionally, the impacts of HIIE were maintained for 30 min post-exercise. However, improved cognitive flexibility was not observed until 30 min after the MICE intervention. HIIE might represent a time-efficient approach for enhancing cognitive flexibility.


2000 ◽  
Vol 88 (5) ◽  
pp. 1707-1714 ◽  
Author(s):  
J. A. Romijn ◽  
E. F. Coyle ◽  
L. S. Sidossis ◽  
J. Rosenblatt ◽  
R. R. Wolfe

We have studied eight endurance-trained women at rest and during exercise at 25, 65, and 85% of maximal oxygen uptake. The rate of appearance (Ra) of free fatty acids (FFA) was determined by infusion of [2H2]palmitate, and fat oxidation rates were determined by indirect calorimetry. Glucose kinetics were assessed with [6,6-2H2]glucose. Glucose Ra increased in relation to exercise intensity. In contrast, whereas FFA Ra was significantly increased to the same extent in low- and moderate-intensity exercise, during high-intensity exercise, FFA Ra was reduced compared with the other exercise values. Carbohydrate oxidation increased progressively with exercise intensity, whereas the highest rate of fat oxidation was during exercise at 65% of maximal oxygen uptake. After correction for differences in lean body mass, there were no differences between these results and previously reported data in endurance-trained men studied under the same conditions, except for slight differences in glucose metabolism during low-intensity exercise (Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, and Wolfe RR. Am J Physiol Endocrinol Metab 265: E380–E391, 1993). We conclude that the patterns of changes in substrate kinetics during moderate- and high-intensity exercise are similar in trained men and women.


2017 ◽  
Vol 56 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Carolina Cabral-Santos ◽  
José Gerosa-Neto ◽  
Daniela S. Inoue ◽  
Fabrício E. Rossi ◽  
Jason M. Cholewa ◽  
...  

AbstractThe aim of this study was to investigate the physiological responses to moderate-intensity continuous and high-intensity intermittent exercise. Twelve physically active male subjects were recruited and completed a 5-km run on a treadmill in two experimental sessions in randomized order: continuously (70% sVO2max) and intermittently (1:1 min at sVO2max). Oxygen uptake, excess post-exercise oxygen consumption, lactate concentration, heart rate and rating of perceived exertion data were recorded during and after each session. The lactate levels exhibited higher values immediately post-exercise than at rest (High-Intensity: 1.43 ± 0.25 to 7.36 ± 2.78; Moderate-Intensity: 1.64 ± 1.01 to 4.05 ± 1.52 mmol⋅L−1, p = 0.0004), but High-Intensity promoted higher values (p = 0.001) than Moderate-Intensity. There was a difference across time on oxygen uptake at all moments tested in both groups (High-Intensity: 100.19 ± 8.15L; Moderate-Intensity: 88.35 ± 11.46, p < 0.001). Both exercise conditions promoted increases in excess postexercise oxygen consumption (High-Intensity: 6.61 ± 1.85 L; Moderate-Intensity: 5.32 ± 2.39 L, p < 0.005), but higher values were observed in the High-Intensity exercise protocol. High-Intensity was more effective at modifying the heart rate and rating of perceived exertion (High-Intensity: 183 ± 12.54 and 19; Moderate-Intensity: 172 ± 8.5 and 16, respectively, p < 0.05). In conclusion, over the same distance, Moderate-Intensity and High-Intensity exercise exhibited different lactate concentrations, heart rate and rating of perceived exertion. As expected, the metabolic contribution also differed, and High-Intensity induced higher energy expenditure, however, the total duration of the session may have to be taken into account. Moreover, when following moderate-intensity training, the percentage of sVO2max and the anaerobic threshold might influence exercise and training responses.


Nutrients ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 889 ◽  
Author(s):  
Victor Matos ◽  
Daniel Souza ◽  
Victor Santos ◽  
Ítalo Medeiros ◽  
Rodrigo Browne ◽  
...  

This study investigated the effect of high-intensity interval (HIIE) and moderate-intensity continuous exercise (MICE) on glucagon-like peptide 1 (GLP-1), appetite and energy intake (EI) in obese men. In a randomized crossover trial, 12 participants (28.4 ± 2.6 years, 35.5 ± 4.5 kg/m2, 39.8 ± 2.2% body fat) performed: (I) Control (CON, no exercise); (II) MICE (20 min, 70% of maximal heart rate) and (III) HIIE (10 × 1 min at 90% of maximal heart rate with 1 min recovery). GLP-1 and appetite were assessed at: (I) PRE: pre-exercise; (II) POST: immediately post-exercise; (III) POST-1 h: 1 h post-exercise. EI was assessed after an ad libitum meal offered 1 h post-exercise and over 24 h. There was a significant time × condition interaction for GLP-1 (p = 0.035). Higher GLP-1 levels in MICE vs. CON (p = 0.024) and a trend for HIIE vs. CON (p = 0.069) POST-1h was found. Hunger was reduced immediately post-HIIE compared to CON (p < 0.01), but was not sustained POST-1 h (p > 0.05). EI did not differ between the sessions 1 h post-exercise or over 24H (p > 0.05). In summary, although MICE increased GLP-1 levels POST-1h and HIIE induced a transient reduction in hunger, both exercise protocols did not impact EI in obese men.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3769 ◽  
Author(s):  
Zübeyde Aslankeser ◽  
Şükrü Serdar Balcı

BackgroundIt has been believed that the contribution of fat oxidation to total energy expenditure is becoming negligible at higher exercise intensities (about 85% VO2max). The aim of the present study was to examine the changes in substrate oxidation during high-intensity interval exercise in young adult men.MethodsA total of 18 healthy well-trained (aged 19.60 ± 0.54 years, BMI = 22.19 ± 0.64 kg/m2,n = 10) and untrained (aged 20.25 ± 0.41 years, BMI = 22.78 ± 0.38 kg/m2,n = 8) young men volunteered to participate in this study. After an overnight fast, subjects were tested on a cycle ergometer and completed six 4-min bouts of cycling (at ∼80% VO2max) with 2 min of rests between intervals. Energy expenditure and the substrate oxidation rate were measured during the experiment by using indirect calorimetry. The blood lactate concentration was collected immediately after each interval workout.ResultsThe fat oxidation rate during each workout was significantly different between the untrained and the athlete groups (p < 0.05), and the carbohydrate (CHO) oxidation rate during the experiment was similar between groups (p > 0.05). Moreover, lactate concentration significantly increased in the untrained group (p < 0.05), whereas it did not significantly change in the athlete group during the workouts (p > 0.05). Fat contribution to energy expenditure was significantly higher in the athlete group (∼25%) than in the untrained group (∼2%).ConclusionsThe present study indicates that 17 times more fat oxidation was measured in the athlete group compared to the untrained group. However, the athletes had the same CHO oxidation rate as the recreationally active subjects during high-intensity intermittent exercise. Higher fat oxidation rate despite the same CHO oxidation rate may be related to higher performance in the trained group.


Sign in / Sign up

Export Citation Format

Share Document