scholarly journals Future directions and priorities for Arctic bryophyte research

2017 ◽  
Vol 3 (3) ◽  
pp. 475-497 ◽  
Author(s):  
Lily R. Lewis ◽  
Stefanie M. Ickert-Bond ◽  
Elisabeth M. Biersma ◽  
Peter Convey ◽  
Bernard Goffinet ◽  
...  

The development of evidence-based international strategies for the conservation and management of Arctic ecosystems in the face of climate change is hindered by critical knowledge gaps in Arctic floristic diversity and evolution. Particularly poorly studied are the bryophytes, which dominate the vegetation across vast areas of the Arctic and consequently play an important role in global biogeochemical cycles. Currently, much of what is known about Arctic floristic evolution is based on studies of vascular plants. Bryophytes, however, possess a number of features, such as poikilohydry, totipotency, several reproductive strategies, and the ability to disperse through microscopic diaspores, that may cause their responses to Arctic environments to differ from those of the vascular plants. Here we discuss several priority areas identified in the Arctic Council’s “Arctic Biodiversity Assessment” that are necessary to illuminate patterns of Arctic bryophyte evolution and diversity, including dispersal, glacial refugia, local adaptation, and ecological interactions with bryophyte-associated microbiomes. A survey of digitally available herbarium data archived in the largest online aggregate, GBIF, across the Arctic to boreal zones indicates that sampling coverage of mosses is heterogeneous and relatively sparse in the Arctic sensu stricto. A coordinated international effort across the Arctic will be necessary to address knowledge gaps in Arctic bryophyte diversity and evolution in the context of ongoing climate change.

2018 ◽  
Vol 26 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Conor D. Mallory ◽  
Mark S. Boyce

The ability of many species to adapt to the shifting environmental conditions associated with climate change will be a key determinant of their persistence in the coming decades. This is a challenge already faced by species in the Arctic, where rapid environmental change is well underway. Caribou and reindeer (Rangifer tarandus) play a key role in Arctic ecosystems and provide irreplaceable socioeconomic value to many northern peoples. Recent decades have seen declines in many Rangifer populations, and there is strong concern that climate change is threatening the viability of this iconic Arctic species. We examine the literature to provide a thorough and full consideration of the many environmental factors that limit caribou and reindeer populations, and how these might be affected by a warming climate. Our review suggests that the response of Rangifer populations to climate change is, and will continue to be, varied in large part to their broad circumpolar distribution. While caribou and reindeer could have some resilience to climate change, current global trends in abundance undermine all but the most precautionary outlooks. Ultimately, the conservation of Rangifer populations will require careful management that considers the local and regional manifestations of climate change.


1995 ◽  
Vol 27 (6) ◽  
pp. 559-565 ◽  
Author(s):  
Thomas H. Nash ◽  
Astrid G. Olafsen

AbstractUnder field conditions of optimal water hydration, lichen photosynthesis is primarily light-limited and nitrogen fixation is temperature-limited in both Peltigera canina and Stereocaulon tomentosum at Anaktuvuk Pass, Alaska. Thus, where duration of optimal hydration conditions remains unchanged from the present-day climate, the anticipated temperature increases in the Arctic may enhance nitrogen fixation in these lichens more than carbon gain. Because nitrogen frequently limits productivity in Arctic ecosystems, the results are potentially important to the many Arctic and subarctic ecosystems in which such lichens are abundant.


Author(s):  
Quinn M.R. Webber ◽  
Kristy Ferraro ◽  
Jack Hendrix ◽  
Eric Vander Wal

Historically the study of diet caribou and reindeer (Rangifer tarandus (Gmelin, 1788)) has been specific to herds and few comprehensive circumpolar analyses of Rangifer diet exist. As a result, the importance of certain diet items may play an outsized role in the caribou diet zeitgeist, e.g., lichen. It is incumbent to challenge this notion and test the relevant importance of various diet items within the context of prevailing hypotheses. We provide a systematic overview of 30 caribou studies reporting caribou diet and test biologically relevant hypotheses about spatial and temporal dietary variation. Our results indicate that in the winter caribou primarily consume lichen, but in warmer seasons, and primary productivity is lower, caribou primarily consume graminoids and other vascular plants. In more productive environments, where caribou have more competitors and predators, consumption of lichen increased. Overall, our description of caribou diet reveals that caribou diet is highly variable, but in circumstances where they can consume vascular plants, they will. As climate change affects Boreal and Arctic ecosystems, the type and volume of food consumed by caribou has become an increasingly important focus for conservation and management of caribou.


Polar Biology ◽  
2021 ◽  
Author(s):  
Rebecca J. Duncan ◽  
Margaret E. Andrew ◽  
Mads C. Forchhammer

AbstractArctic ecosystems are particularly vulnerable to impacts of climate change; however, the complex relationships between climate and ecosystems make incorporating effects of climate change into population management difficult. This study used structural equation modelling (SEM) and a 24-year multifaceted monitoring data series collected at Zackenberg, North-East Greenland, to untangle the network of climatic and local abiotic and biotic drivers, determining their direct and indirect effects on two herbivores: musk ox (Ovibos moschatus) and collared lemming (Dicrostonyx groenlandicus). Snow conditions were determined to be the central driver within the system, mediating the effects of climate on herbivore abundance. Under current climate change projections, snow is expected to decrease in the region. Snow had an indirect negative effect on musk ox, as decreased snow depth led to an earlier start to the Arctic willow growing season, shown to increase fecundity and decrease mortality. Musk ox are therefore expected to be more successful under future conditions, within a certain threshold. Snow had both positive and negative effects on lemming, with lemming expected to ultimately be less successful under climate change, as reduction in snow increases their vulnerability to predation. Through their capacity to determine effects of climatic and local drivers within a hierarchy, and the relative strength and direction of these effects, SEMs were demonstrated to have the potential to be valuable in guiding population management.


2020 ◽  
Author(s):  
Marta Royo-Llonch ◽  
Pablo Sánchez ◽  
Clara Ruiz-González ◽  
Guillem Salazar ◽  
Carlos Pedrós-Alió ◽  
...  

SummaryThe Arctic Ocean is a key player in the regulation of climate and at the same time is under increasing pressure as a result of climate change. Predicting the future of this ecosystem requires understanding of the responses of Arctic microorganisms to environmental change, as they are the main drivers of global biogeochemical cycles. However, little is known about the ecology and metabolic potential of active Arctic microbes. Here, we reconstructed a total of 3,550 metagenomic bins from 41 seawater metagenomes collected as part of the Tara Oceans expedition, covering five different Arctic Ocean regions as well as the sub-Arctic North Atlantic Ocean and including various depths and different seasons (spring to autumn). Of these bins, 530 could be classified as Metagenome Assembled Genomes (MAGs) and over 75% of them represented novel species. We describe their habitat range and environmental preferences, as well as their metabolic capabilities, building the most comprehensive dataset of uncultured bacterial and archaeal genomes from the Arctic Ocean to date. We found a prevalence of mixotrophs, while chemolithoautotrophs were mostly present in the mesopelagic Arctic Ocean during spring and autumn. Finally, the catalogue of Arctic MAGs was complemented with metagenomes and metatranscriptomes from the global ocean to identify the most active MAGs present exclusively in polar metagenomes. These polar MAGs, which display a range of metabolic strategies, might represent Arctic sentinels of climate change and should be considered in prospective studies of the future state of the Arctic Ocean.


2021 ◽  
Vol 8 (1) ◽  
pp. 144-155
Author(s):  
Julia E. Baak ◽  
Mark L. Mallory ◽  
Christine M. Anderson ◽  
Marie Auger-Méthé ◽  
Christie A. Macdonald ◽  
...  

Abstract The Arctic is warming three times faster than the rest of the globe, causing rapid transformational changes in Arctic ecosystems. As these changes increase, understanding seabird movements will be important for predicting how they respond to climate change, and thus how we plan for conservation. Moreover, as most Arctic-breeding seabirds only spend the breeding season in the Arctic, climate change may also affect them through habitat changes in their non-breeding range. We used Global Location Sensors (GLS) to provide new insights on the movement of Arctic-breeding herring gulls (Larus smithsoniansus) in North America. We tracked gulls that wintered in the Gulf of Mexico (n = 7) or the Great Lakes (n = 1), and found that migratory routes and stopover sites varied between individuals, and between southbound and northbound migration. This inter-individual variation suggests that herring gulls, as a generalist species, can make use of an array of regions during migration, but may be more susceptible to climate change impacts in their overwintering locations than during migration. However, due to our limited sample size, future, multi-year studies are recommended to better understand the impacts of climate change on this Arctic-breeding seabird.


2018 ◽  
Vol 96 (3) ◽  
pp. 277-281 ◽  
Author(s):  
F. Dalerum ◽  
S. Freire ◽  
A. Angerbjörn ◽  
N. Lecomte ◽  
Å. Lindgren ◽  
...  

The grey wolf (Canis lupus Linnaeus, 1758) is one of the most widespread large carnivores on Earth, and occurs throughout the Arctic. Although wolf diet is well studied, we have scant information from high Arctic areas. Global warming is expected to increase the importance of predation for ecosystem regulation in Arctic environments. To improve our ability to manage Arctic ecosystems under environmental change, we therefore need knowledge about Arctic predator diets. Prey remains in 54 wolf scats collected at three sites in the high Arctic region surrounding the Hall Basin (Judge Daly Promontory, Ellesmere Island, Canada, and Washington Land and Hall Land, both in northwestern Greenland) pointed to a dietary importance of arctic hare (Lepus arcticus Ross, 1819; 55% frequency of occurrence) and muskoxen (Ovibos moschatus (Zimmermann, 1780); 39% frequency of occurrence), although we observed diet variation among the sites. A literature compilation suggested that arctic wolves (Canis lupus arctos Pocock, 1935) preferentially feed on caribou (Rangifer tarandus (Linnaeus, 1758)) and muskoxen, but can sustain themselves on arctic hares and Greenland collared lemmings (Dicrostonyx groenlandicus (Traill, 1823)) in areas with limited or no ungulate populations. We suggest that climate change may alter the dynamics among wolves, arctic hare, muskoxen, and caribou, and we encourage further studies evaluating how climate change influences predator–prey interactions in high Arctic environments.


2020 ◽  
pp. 75-99
Author(s):  
O. I. Sumina

One of the thermokarst relief forms is baidzharakh massif — the group of mounds separated by trenches formed as a result of the underground ice-wedge polygonal networks melting (Fig. 1). Study of baidzharakh vegetation took place on the northeast coast of the Taimyr Peninsula (the Pronchishcheva Bay area) and on the New Siberian Islands (the Kotelny Island) in 1973–1974 (Sumina, 1975, 1976, 1977a, b, 1979 et al.). The aim of this paper is to produce the classification of baidzharakh mound and trenches communities according to the Brown-Blanquet approach (Westhoff, Maarel, 1978) and to compare these data with the community types earlier established on domination principle (Sumina, 1975 et al.). The information obtained in the 1970s could be helpful in a comparative assessment of the thermokarst process dynamics over the past 4 decades, as well as for comparing these processes in other regions of the Arctic. Both studied areas are located in the northern part of the arctic tundra subzone. On the Taimyr Peninsula (and in particular in the Pronchishcheva Bay area) the plakor (zonal) communities belong to the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998. Our relevés of plakor tundra on the Kotelny Island demonstrate similarity with the zonal communities of the northeast coast of the Taimyr Peninsula (Table 2). Relevés of communities of thermokarst mounds were made within their boundaries, the size of ~ 30 m². In trenches sample plots of the same area had rectangular shape according to trench width. Relevés of plakor tundra were made on 5x6 m plots. There were marked: location in relief, moistening, stand physiognomy, nanorelief, the percent of open ground patches and degree of their overgrowing, total plant cover, that of vascular plants, mosses, and lichens (especially — crustose ons), and cover estimates for each species. The shape of thermokarst mounds depends on the stage of thermodenudation processes. Flat polygons about 0.5 m height with vegetation similar to the plakor tundra are formed at the beginning of ice melting (Fig. 3, a), after which the deformation of the mounds (from eroded flat polygon (Fig. 3, b) to eroded conical mound (Fig. 3, c). Such mounds of maximal height up to 5 m are located on the middle part of steep slopes, where thermodenudation is very active. The last stage of mound destruction is slightly convex mound with a lumpy surface and vegetation, typical to snowbed sites at slope foots (Fig. 3, d, and 5). Both on watersheds and on gentle slopes mounds are not completely destroyed; and on such elongated smooth-conical mounds dense meadow-like vegetation is developed (Fig. 6). On the Kotelny Island thermokarst mounds of all described shapes occur, while in the Pronchishcheva Bay area only flat polygons, eroded flat polygons, and elongated smooth-conical mounds are presented. Under the influence of thermodenudation the plakor (zonal) vegetation is being transformed that allows to consider the most of mound and trench communities as the variants of zonal association. On the base of 63 relevés, made in 14 baidzharakh massifs, 2 variants with 7 subvariants of the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998 were established, as well as 1 variant of the azonal ass. Poo arcticae– Dupontietum fisheri Matveyeva 1994, which combines the vegetation of wet trenches with dense herbmoss cover. A detailed description of each subvariant is done. All these syntaxa are compared with the types of mound and trenh communities established previously by the domination principle (Sumina, 1975, 1976, 1979 et al.) and with Brown-Blanquet’ syntaxa published by other authors. The Brown-Blanquet approach in compare with domination principle, clearly demonstrates the similarity between zonal and baidzharakh massifs vegetation. Diagnostic species of syntaxa of baidzharakh vegetation by other authors (Matveyeva, 1994; Zanokha, 1995; Kholod, 2007, 2014; Telyatnikov et al., 2017) differ from ours. On the one hand, this is due to the fact that all mentioned researchers worked in another areas, and on the other, with different hierarchial levels of syntaxa, which are subassociations (or vicariants) in cited works or variants and subvariants in the our. Communities of mounds as well as of trenches in different regions have unlike species composition, but similar apearance, which depends on the similarity of the life form composition and community pattern, stage of their transformation and environmental factors. This fact is a base to group communities by physiognomy in order to have an opportunity of comparative analysis of baidzharakh vegetation diversity in different regions of the Arctic. In total, 6 such groups for thermokarst mounds and trenches are proposed: “tundra-like” ― vegetation of flat polygonal mounds (or trenches) is similar to the plakor (zonal) communities; “eroded tundra-like” ― tundra-like vegetation is presented as fragments, open ground occupies the main part of flat polygonal mounds; “eroded mounds with nonassociated vegetation” ― eroded mounds of various shapes up to sharp conical with absent vegetation at the top and slopes, sparse pioneer vascular plants on a bare substrate and crustose lichens and chionophilous grasses at foots; “meadow-like” ― herb stands with a participation of tundra dwarf-shrubs, mosses, and lichens on elongated smooth-conical mounds and in moderately moist trenches; “communities in snowbeds” ― thin plant cover formed by small mosses, liverworts, crustose lichens, and sparse vascular plants in snowbed habitats on destroyed slightly convex mounds with a lumpy surface and in trenches; “communities of cotton grass” or others, depending on the dominant species ― in wet trenches where vegetation is similar to the arctic hypnum bogs with dominant hygrophyte graminoids as Eriophorum scheuchzeri, E. polystachion, Dupontia fischeri et al. This sheme according to physiognomic features of thermokarst mound and trench communities, as a simplier way to assess the current dynamic stage of the baidzharakh massifs, may be useful for monitoring the thermodenudation activity in different areas of the Arctic, particularly in connection with observed climate changes (ACIA, 2004) and a possible dramatic “cascade of their environmental consequences” (Fraser et al., 2018).


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Sign in / Sign up

Export Citation Format

Share Document