Developmental morphology of normal and atypical flowers of Philodendron insigne (Araceae): a new case of homeosis

2002 ◽  
Vol 80 (11) ◽  
pp. 1160-1172 ◽  
Author(s):  
Denis Barabé ◽  
Christian Lacroix ◽  
Bernard Jeune

The early stages of development of the inflorescence of Philodendron insigne were examined using scanning electron microscopy. Pistillate flowers are initiated on the lower portion of the inflorescence and staminate flowers are initiated on the distal portion. The male flowers have three to five stamens. The female flowers have a multilocular ovary consisting of three to five locules. A transition zone consisting of sterile male flowers and atypical bisexual flowers with fused or free carpels and staminodes is located between the male and female floral zones. Generally, the portion of the bisexual flower facing the male zone forms stamens, and the portion facing the female zone develops one or two carpels. In P. insigne, the incomplete separation of staminodes from the gynoecial portion of the whorl shows that the staminodes and carpels belong to the same whorl. The atypical bisexual flowers of P. insigne are believed to be a case of homeosis where carpels have been replaced by sterile stamens on the same whorl. However, there is no regularity in the number of organs involved in the homeotic transformation taking place in atypical bisexual flowers. The presence of atypical bisexual flowers may correspond to a morphogenetic gradient at the level of the inflorescence as a whole.Key words: flower, development, gradient, inflorescence.

2000 ◽  
Vol 78 (5) ◽  
pp. 557-576 ◽  
Author(s):  
Denis Barabé ◽  
Christian Lacroix ◽  
Bernard Jeune

The early stages of inflorescence development in Philodendron fragrantissimum (Hook.) G. Don are examined using scanning electron microscopy. Pistillate flowers are initiated on the lower portion of the inflorescence and staminate flowers are initiated on the distal portion. Male flowers have 6-8 stamens (sometimes 5) and female flowers have a multilocular ovary consisting of 6-10 locules. A transition zone consisting of sterile male flowers and bisexual flowers with fused or free carpels and staminodes is also present. This zone is located between the male- and female- flower zones. Generally, the portion of the bisexual flower adjacent to the male zone forms staminodes and the portion bordering the female zone develops an incomplete gynoecium with few carpels. The different floral organs of the bisexual flowers are all inserted in the same whorl. Pistillate and staminate flowers are inserted on the same contact parastichies along the inflorescence; there is no spatial discontinuity between the female zone, the bisexual zone, and the male zone. The presence of bisexual flowers is believed to correspond to a morphogenetic gradient at the level of the inflorescence as a whole. A quantitative analysis of a series of parameters (i.e., length and width of flower types and inflorescence zones) indicates that each zone of the inflorescence has its own particular nature as far as rhythm of growth and geometry are concerned. There appears to be evidence for some form of partitioning in the global development of the inflorescence. The growth of a zone seems to be more variable in size and geometry than that of individual flowers. During later stages of development, the size of the flowers of the intermediate zone, especially the sterile male flowers, increases considerably, until it exceeds that of both male and female flowers.Key words: homeosis, morphogenesis, gradient, allometry, reproduction.


2004 ◽  
Vol 82 (10) ◽  
pp. 1459-1467 ◽  
Author(s):  
Denis Barabé ◽  
Christian Lacroix ◽  
Bernard Jeune

In Philodendron, pistillate flowers are initiated on the proximal portion of the inflorescence and staminate flowers are initiated on the distal portion. Between the staminate and pistillate flowers, there is a transition zone consisting of sterile male flowers adjacent to the male zone and a row of atypical bisexual flowers between the sterile male zone and the female zone. The portion of the atypical bisexual flower facing the male zone forms stamens, and the portion facing the female zone develops into an incomplete gynoecium with few carpels. The atypical bisexual flowers of Philodendron are believed to be a case of homeosis where carpels are replaced by sterile stamens on the same whorl. In Philodendron melinonii Brongniart ex Regel, Philodendron pedatum (Hooker) Kunth, Philodendron squamiferum Poeppig., and Philodendron solimoesense A.C. Smith, there is a significant quantitative relationship between the number of carpels and the number of staminodes involved in the homeotic transformation in atypical bisexual flowers. On the other hand, such a significant correlation does not exist in Philodendron fragrantissimum (Hooker) Kunth and Philodendron insigne Schott, and Philodendron callosum K. Krause. There is a one to one organ replacement in homeotic flowers in both P. pedatum and P. squamiferum whereas, in P. solimoesense, an average of 2.56 staminodes replace one carpel. The average number of organs developing on an atypical bisexual flower and the number of organs involved in a homeotic transformation appear to be two independent phenomena. The number of carpels in female flowers is correlated with the maximum total number of appendages (carpels and staminodes) that can develop in atypical bisexual flowers.Key words: development, inflorescence, gradient, position, information.


1996 ◽  
Vol 74 (6) ◽  
pp. 909-918 ◽  
Author(s):  
Chafika Boubes ◽  
Denis Barabé

The inflorescence of Philodendron acutatum possesses female flowers in the inferior part and male flowers in the distal part. The male flowers possess from three to six stamens, rarely seven to nine. The female flowers possess a multilocular ovary comprising from 8 to 12 locules. Each locule corresponds to a closed carpel. The stylar canals remain separate up to the upper part of the gynoecium. In this inflorescence, one observes an intermediary zone comprising bisexual flowers with fused or free carpels and stamens, inserted in the same whorl. Generally, the portion of the bisexual flower facing the male zone is formed by stamens, and that facing the female zone is formed by an incomplete gynoecium comprising few carpels. The separation between the two parts of a bisexual flower is generally clear; however, in rare cases, a stamen appears between two carpels, or a carpel between two stamens. Nevertheless, in all cases, the different flower parts are inserted on the same whorl. The presence of bisexual flowers corresponds probably to a morphogenetic gradient at the level of the overall inflorescence. The genes controlling the expression of flower sex are probably governed by chemical processes that act at the level of the overall inflorescence. Keywords: morphogenesis, gradient, flower, development, inflorescence.


1996 ◽  
Vol 74 (6) ◽  
pp. 898-908 ◽  
Author(s):  
Denis Barabé ◽  
Charles Bertrand

The floral development of Culcasia saxatilis, Culcasia tenuifolia, and Cercestis stigmaticus has been analyzed. These two genera possess unisexual flowers without perianth. In these species, the cylindrical inflorescence carry male flowers in the upper part and female flowers in the lower part. In C. tenuifolia, the separation between the female zone and the male zone is very sharp. There is no intermediate zone. In C. saxatilis and C. stigmaticus, we may observe rudimentary bisexual flowers between the two zones. In this intermediate zone, flowers located near the male zone possess male appendages more developped than those located near the female zone. On the other hand, the flowers located near the female zone possess female appendages more developped than those located near the male zone. The results suggest the existence of a morphogenetic gradient in the inflorescence of some species of Araceae. Keywords: morphogenesis, gradient, flower, development, inflorescence.


2008 ◽  
Vol 56 (8) ◽  
pp. 666 ◽  
Author(s):  
Nabil M. Ahmad ◽  
Peter M. Martin ◽  
John M. Vella

The micromorphology and histology of the development of male and female flowers of the dioecious Australian endemic species Lomandra longifolia Labill. was studied by means of scanning electron microscopy and light microscopy of entire and sectioned material. Although mature flowers are functionally unisexual, in the early stages of development pistillate and staminate flowers are identical and apparently bisexual. In a sequential fashion, six perianth parts are initiated within two alternating whorls, the sepals first and the petals second; six stamens are initiated in two alternating whorls of three stamens each, the first opposite the sepals and the second opposite the petals; and last, a central gynoecium is initiated. Following initiation, the two flower types diverge developmentally when the stamens become bilobed. In male flowers, cytological analysis of the slowly growing abortive pistil shows that megasporogenesis does not occur. Pistil abortion happens before meiosis whereas the stamens continue to develop until maturity and dehiscence. In female flowers, stamen arrest occurs before the onset of meiosis in microspore mother cells, after which the pistil continues its development through megasporogenesis and megagametogenesis. In all, 14 stages of floral development of both male and female flowers have been designated. Stages 1–6 of the two flower types were common to both sexes.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1538
Author(s):  
Ana Teresa Alhinho ◽  
Miguel Jesus Nunes Ramos ◽  
Sofia Alves ◽  
Margarida Rocheta ◽  
Leonor Morais-Cecílio ◽  
...  

The sweet chestnut tree (Castanea sativa Mill.) is one of the most significant Mediterranean tree species, being an important natural resource for the wood and fruit industries. It is a monoecious species, presenting unisexual male catkins and bisexual catkins, with the latter having distinct male and female flowers. Despite the importance of the sweet chestnut tree, little is known regarding the molecular mechanisms involved in the determination of sexual organ identity. Thus, the study of how the different flowers of C. sativa develop is fundamental to understand the reproductive success of this species and the impact of flower phenology on its productivity. In this study, a C. sativa de novo transcriptome was assembled and the homologous genes to those of the ABCDE model for floral organ identity were identified. Expression analysis showed that the C. sativa B- and C-class genes are differentially expressed in the male flowers and female flowers. Yeast two-hybrid analysis also suggested that changes in the canonical ABCDE protein–protein interactions may underlie the mechanisms necessary to the development of separate male and female flowers, as reported for the monoecious Fagaceae Quercus suber. The results here depicted constitute a step towards the understanding of the molecular mechanisms involved in unisexual flower development in C. sativa, also suggesting that the ABCDE model for flower organ identity may be molecularly conserved in the predominantly monoecious Fagaceae family.


2002 ◽  
Vol 80 (11) ◽  
pp. 1203-1208 ◽  
Author(s):  
Lorena Ashworth ◽  
Leonardo Galetto

In dioecious and monoecious plants that depend on animal vectors for reproduction, pollinators have to be attracted to male and female flowers for pollination to be effective. In the monoecious Cucurbita maxima ssp. andreana, male flowers are produced in greater quantity, are spatially more exposed to pollinators and offer pollen in addition to nectar as floral rewards. Nectar traits were compared between male and female flowers to determine any differences in the characteristics of the main reward offered to pollinators. Nectar chemical composition and sugar proportions were similar between flower types. Total nectar sugar production per female flower was threefold higher than per male flower, and nectar removal did not have any effect on total nectar production in both flower morphs. Pollinators reduced nectar standing crops to similar and very scarce amounts in both flower types. Results indicate indirectly that pollinators are consuming more nectar from female flowers, suggesting that the higher nectar production in female flowers may be a reward-based strategy to achieve the high female reproductive output observed in this species.Key words: Cucurbitaceae, Cucurbita maxima ssp. andreana, nectar production, nectar sugar composition, removal effects, standing crop.


2020 ◽  
Vol 17 (2) ◽  
pp. 81
Author(s):  
Van Basten Tambunan ◽  
Bandung Sahari ◽  
Damayanti Buchori ◽  
Purnama Hidayat

<p>The African oil palm weevil,<strong> </strong><em>Elaeidobius kamerunicus</em> is an effective pollinator of oil palm. Each individual palm produces exclusively male or female inflorescence so that the success of pollination depends on the ability of the pollinator to transfer pollen from male to female flowers. The objective of this research was to study the amount of pollen carried by <em>E. kamerunicus</em> between male and female inflorescences (pollen load) and the amount of pollen carried on each part of the weevil’s body (pollen distribution). Fifty each of male and female  <em>E. kamerunicus</em> individuals were collected from male and female flowers on trees in 3 locations: Siantar (North Sumatra), Dramaga (West Java), and Morowali (Central Sulawesi). Data on pollen load and pollen distribution on the weevil’s body were analyzed using <em>ImageJ</em> software. Results show that <em>E. kamerunicus</em> individuals collected more pollen from male flowers than from female flowers. In addition, male insects carried more pollen on their bodies than female insects. Pollen distribution on weevil body parts was highest on the elytra, followed by the thorax, abdomen, legs, and head respectively.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shu-Fen Li ◽  
Can-Can Lv ◽  
Li-Na Lan ◽  
Kai-Lu Jiang ◽  
Yu-Lan Zhang ◽  
...  

AbstractDNA methylation is a crucial regulatory mechanism in many biological processes. However, limited studies have dissected the contribution of DNA methylation to sexual differentiation in dioecious plants. In this study, we investigated the variances in methylation and transcriptional patterns of male and female flowers of garden asparagus. Compared with male flowers, female flowers at the same stages showed higher levels of DNA methylation. Both male and female flowers gained DNA methylation globally from the premeiotic to meiotic stages. Detailed analysis revealed that the increased DNA methylation was largely due to increased CHH methylation. Correlation analysis of differentially expressed genes and differentially methylated regions suggested that DNA methylation might not have contributed to the expression variation of the sex-determining genes SOFF and TDF1 but probably played important roles in sexual differentiation and flower development of garden asparagus. The upregulated genes AoMS1, AoLAP3, AoAMS, and AoLAP5 with varied methylated CHH regions might have been involved in sexual differentiation and flower development of garden asparagus. Plant hormone signaling genes and transcription factor genes also participated in sexual differentiation and flower development with potential epigenetic regulation. In addition, the CG and CHG methylation levels in the Y chromosome were notably higher than those in the X chromosome, implying that DNA methylation might have been involved in Y chromosome evolution. These data provide insights into the epigenetic modification of sexual differentiation and flower development and improve our understanding of sex chromosome evolution in garden asparagus.


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval

Abstract Genetics: The chromosome number reported for Cucumis anguria is 2n=24 (Ramachandran and Narayan, 1990; Flora of North America Editorial Committee, 2020). Reproductive Biology: Cucumis anguria is a monoecious species, with individual male and female flowers appearing on both plants, that depends of pollinators to transfer pollen grains in order to produce fruits. Although self-fertile, a degree of outcrossing results from insect pollination. Zagorcheva (1988) has suggested that C. anguria may also be a facultative apomict. The flowering season is of about 55-58 days. Male flowers appear before female flowers and both male and female flowers remain open for one day (from 7:30 am to 4:00 pm). The relationship between male and female flowers is on average 5.5 male flowers for each female flower. The greater number of male flowers compared to female flowers produces a greater flow of pollen in the crop and ensures pollination. Flowers are visited and pollinated by insects. In a study in Brazil, the most important visitor was Apis mellifera (72% of all visits) followed by native bees from the genera Plebeia sp. (16.7%), Exomalopsis sp. (8.3%) and Melissodes sp. (2.8%). Flowers are also visited by butterflies (Malerbo-Souza et al., 2020). Physiology and Phenology: Cucumis anguria is an annual species. Early growth is upright, followed by branching at the base to produce several trailing stems. Within its native distribution range, this species germinates in a few days during the summer rains when night temperatures are above 12°C and the soil is sufficiently wet. When plants are about 2-3 m length, they start to develop flowers. Fruits are often produced within 60 days after germination. Plants may produce up to 50 fruits per stem. Fruits remain attached to the withered annual stems long after these have died back at the end of the growing season (Wilkins-Ellert, 2004). Photoperiod is important and longer days coupled with higher temperatures confines plants to the production of male flowers. Shorter days and a drop in temperature stimulate the production of female flowers. Fruiting occurs within 60 days of planting and fruit are produced continuously, with as many as 50 fruits per plant produced during the growing season (Wilkins-Ellert, 2004). Environmental Requirements: Cucumis anguria prefers to grow in tropical and subtropical climates. It grows best in areas with mean annual temperatures ranging from 15°C to 28°C (tolerates 8°C-35°C) and mean annual rainfall between 800 mm-1000 mm (tolerates 300 mm-1700 mm). It is well adapted to soils with low fertility and is adapted to grow in a wide range of soil types, including Kalahari sands (regosols), red clays and black cotton soils (vertisols) with pH in the range 6-7.5 (tolerates 5.5 - 8.3), but it grows best on well drained sandy soils (Fernandes, 2011). This species is sensitive to cold and does not tolerate frost (Wilkins-Ellert, 2004; Useful Tropical Plants, 2020).


Sign in / Sign up

Export Citation Format

Share Document