A transplant experiment on the factors preventing lichen colonization of oak bark in southeast England under declining SO2 pollution

2003 ◽  
Vol 81 (5) ◽  
pp. 439-451 ◽  
Author(s):  
K Batty ◽  
J W Bates ◽  
J NB Bell

To investigate the factors responsible for limited lichen recolonization on oak with declining SO2 concentrations, Parmelia caperata (L.) Ach. and Parmelia saxatilis (L.) Ach. were transplanted to five stations along a transect running from central London (U.K.) into the surrounding countryside. Healthy thalli were transplanted onto young and mature Quercus robur L. (pedunculate oak) and Betula pendula Roth (silver birch), and some were moved with their original bark attached to investigate the importance of bark acidification. Relative growth rates and visible injury were monitored over 2 years, along with concentrations of atmospheric SO2 and NO2, measured using diffusion tube samplers and bark chemistry. SO2 concentrations were low in central London in comparison with the situation in previous decades, but they remain sufficiently high to harm the most sensitive lichens. NO2 concentrations increased sharply on approaching London, and levels were higher in winter than in summer. Bark pH was lower in mature oak than in birch or young oak at the two innermost stations, and levels of bark Mg also declined in London. Transplants of P. caperata survived on birch and young oak at all transect stations except Hyde Park, whereas P. saxatilis failed to grow over a wider range of the transect stations. We conclude that modest SO2 levels, interacting with low bark pH, still inhibit recolonization of oaks by P. caperata in central London. Parmelia saxatilis, in addition, appears to be limited by another factor such as the high NO2 concentrations that now characterize urban and suburban London, rather than through an inherently poor dispersal potential.Key words: atmospheric pollution, bark acidification, epiphytic lichens, NO2, recolonization, SO2.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1059
Author(s):  
Slobodan Milanović ◽  
Ivan Milenković ◽  
Jovan Dobrosavljević ◽  
Marija Popović ◽  
Alejandro Solla ◽  
...  

Interactions between plants, insects and pathogens are complex and not sufficiently understood in the context of climate change. In this study, the impact of a root pathogen on a leaf-eating insect hosted by a tree species at elevated CO2 concentration is reported for the first time. The combined and isolated effects of CO2 and infection by the root pathogen Phytophthora plurivora on English oak (Quercus robur) seedlings were used to assess growth rates of plants and of gypsy moth (Lymantria dispar) larvae. For this purpose, two Q. robur provenances (Belgrade and Sombor) were used. At ambient CO2 concentration, the relative growth rates of larvae consuming leaves of plants infected by P. plurivora was higher than those consuming non-infected plants. However, at elevated CO2 concentration (1000 ppm) higher relative growth rates were detected in the larvae consuming the leaves of non-infected plants. At ambient CO2 concentration, lower growth rates were recorded in L. dispar larvae hosted in Q. robur from Belgrade in comparison to larvae hosted in Q. robur from Sombor. However, at elevated CO2 concentration, similar growth rates irrespective of the provenance were observed. Defoliation by the gypsy moth did not influence the growth of plants while P. plurivora infection significantly reduced tree height in seedlings from Belgrade. The results confirm that a rise of CO2 concentration in the atmosphere modifies the existing interactions between P. plurivora, Q. robur, and L. dispar. Moreover, the influence of the tree provenances on both herbivore and plant performance at elevated CO2 concentrations suggests a potential for increasing forest resilience through breeding.



1961 ◽  
Vol 1 (2) ◽  
pp. 49-54
Author(s):  
S. U. Khan

It is sometimes said that "national planning will simply have no meaning if it completely ignores the economic disparities between the two wings and fails to evolve a sensible pattern of regional planning"2. The lack of much essential data on a regional basis, however, renders any precise estimate of the relative growth rates almost impossible. Data either are not available or are inadequate on such important variables as production, income, consumption and trade, so that even a correct evaluation of past development efforts is not possible. The implications of such a situation for future planning are not difficult to understand. In this article an attempt is made to estimate the absorption of specified commodities in East and West Pakistan separately3. This will indicate the pattern of consumption and also give a rough idea about the growth rate of the two wings. With this purpose in view, quantity indices of absorption are prepared for each wing separately, taking data on availability of goods and prices from the Institute's monograph on Inflation. The quantity indi¬ces, however, are not of course strictly comparable with national income estimates because of the difference in coverage of the two series. National income data include government, services, trade, etc., while the quantity indices cover only specified goods available for each region.



HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1091G-1091
Author(s):  
Anne K. Hurley ◽  
B. Greg Cobb

Cucumis sativus, L., `Poinsett' seedlings were grown under artificial light in 40% modified Hoagland's solution until an average plant plastochron index of 4.73 was reached. Plants were then placed in solutions of (1) 0 mM NaCl, (2) 80 mM NaCl (salt-shock), or (3) placed in a dropwise gradient solution of NaCl and Hoagland's until the final concentration of 80 mM NaCl was reached at 41 hours. Leaves of the 80 mM shock treatment wilted immediately, but recovered turgor within 6 hours. Leaves of 80 mM gradient did not wilt at anytime. The control and gradient treatments had relative growth rates which were similar to each other, but RGR decreased in the shock treatment. Invertase activity was measured in the roots at 24, 41, and 48 hours after initial treatment. Invertase activity of shock treatment increased significantly over the controls at 24 hours. The 80mM gradient was not significantly different than either treatment. Four isozymes of α– galactosidase were detected. The relative intensities of the bands varied with time and treatment. One invertase band was resolved in roots on 8% native acrylamide gels. SDS gels indicated increases in proteins in the gradient treatment compared to the control and the 80 mM shock treatment.



Crop Science ◽  
1990 ◽  
Vol 30 (3) ◽  
pp. 549-552 ◽  
Author(s):  
M. E. Nevado ◽  
H. Z. Cross


1993 ◽  
Vol 58 ◽  
Author(s):  
D. Maddelein ◽  
J. Neirynck ◽  
G. Sioen

Mature  Scots pine (Pinus sylvestris  L.) stands are dominating large parts of the Flemish forest area. Broadleaved  species regenerate spontaneously under this pine canopy. This study studied  the growth and development of two planted pine stands with an older natural  regeneration, dominated by pedunculate oak (Quercus  robur L.), and discussed management options for  similar stands.     The results indicated a rather good growth of the stands, with current  annual increments of 5 m3.ha-1.yr-1. The pine overstorey is growing into valuable sawwood  dimensions, while the broadleaved understorey slowly grows into the  upperstorey. The quality of the regeneration is moderate but can be improved  by silvicultural measurements (pruning, early selection).     In both stands, an interesting (timber production, nature conservation)  admixture of secondary tree species is present in the regeneration. Stand  management is evolving from the classical clearcut system towards a  combination of a type of selection and group selection system.



1979 ◽  
Vol 69 (1) ◽  
pp. 141-148 ◽  
Author(s):  
A. Mudd ◽  
G. L. Bateman

AbstractGrowth of the food fungus of the leaf-cutting ant Atta cephalotes (L.) on extracts of plants selected by the ants was shown to be affected by the plant species, the pH of the extract, the concentration of the sap or plant extract and pretreatment of the substrate by the ants. It was not possible to establish an unambiguous relationship between the rate of growth of the fungus on leaf extracts and the foraging preferences of the ants for the leaves. There were indications, however, that the fungus grows most rapidly on extracts of plant material preferred by A. cephalotes. Relative growth rates of the fungus on different substrates may be related to the presence of growth inhibitors rather than to nutrient availability.



1996 ◽  
Vol 26 (9) ◽  
pp. 1556-1568 ◽  
Author(s):  
Thimmappa S. Anekonda ◽  
Richard S. Criddle ◽  
Lee D. Hansen ◽  
Mike Bacca

Seventeen Eucalyptus species and 30 rapid-growing Eucalyptuscamaldulensis trees (referred to as plus trees), growing in a plantation were studied to examine relationships among measured plant growth and respiratory parameters, geographical origins, and growth climate. The respiratory parameters measured at two different temperatures by isothermal calorimetry were metabolic heat rate, rate of CO2 production, and the ratio of heat rate to CO2 rate. Metabolic heat rate was also measured as a continuous function of temperature by differential scanning calorimetry in the range of 10 to 40 °C. Tree growth was measured as rates of height and stem volume growth. The values of respiratory and growth variables of Eucalyptus species are significantly correlated with latitude and altitude of origin of their seed sources. The maximum metabolic heat rate, the temperature of the maximum heat rate, the temperature coefficients of metabolic rate, and the temperatures at which the slopes of Arrhenius plots change are all genetically determined parameters that vary both within and among species. Measurement of growth rate–respiration rate–temperature relationships guide understanding of why relative growth rates of Eucalyptus species and individual genotypes differ with climate, making it possible to identify genotypes best suited for rapid growth in different climates. The temperature dependence of respiration rates is an important factor determining relative growth rates of eucalypts in different climates. To achieve optimum biomass production the temperature dependence of individual plants must be matched to growth climate.



1967 ◽  
Vol 69 (3) ◽  
pp. 305-315 ◽  
Author(s):  
J. E. Jackson

Growth analysis of cotton crops sown in the Sudan Gezira at monthly intervals between August and May revealed a marked seasonal pattern of growth. Irrespective of plant age and fruiting state growth of non-senescent plants was slowest during the cool winter months. Relative growth rates of young plants were highest in August, September and early October due to the high specific leaf areas and fairly high net assimilation rates found then. They were lowest when minimum temperatures were lowest. Net assimilation rates were also lowest in the coolest months, probably as a result of restricted growth. High temperatures in the spring reduced fruiting. It is concluded that low minimum temperatures and high evaporation rates are both associated with slow growth, and play a large part in determining the characteristic decline of growth rates of cotton sown at the usual date in August.I wish to thank the Chief of the Research Division, Ministry of Agriculture, Sudan, for permission to publish this paper and to record my gratitude to the team of field and laboratory assistants, especially Salih Saad and Hassan Osman, who helped in the work.





Sign in / Sign up

Export Citation Format

Share Document