Reciprocal differences of morphological and DNA characters in interspecific hybridization in Cucumis

2004 ◽  
Vol 82 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Jin Feng Chen ◽  
Fei Yun Zhuang ◽  
Xian An Liu ◽  
Chun Tao Qian

Plant materials with different ploidy levels from a series of reciprocal crosses between a wild Cucumis species (Cucumis hystrix Chakr., 2n = 2x = 24) and cucumber (Cucumis sativus L., 2n = 2x = 14) were used to investigate reciprocal differences in morphology, fertility, and DNA characteristics. Diameter of the stem, length of the petiole, and shape and size of the leaves of the hybrids were intermediate when compared with their parents. The length of the internode of the main stem showed maternal transmission in all hybrids, but the branching number and appearance of the first female flower showed paternal transmission. The differences in fertility of reciprocal plants were significant. When C. hystrix was used as the female parent, the diploid (2n = 2x = 19) hybrids set fruit without seeds, whereas the amphidiploid (2n = 4x = 38) plants produced fruits with viable seeds. However, when cucumber was used as the female parent, both tetraploid and diploid hybrid plants were highly sterile and did not set fruits. To further investigate variation in hybrid genomes, 21 arbitrary primers were used for random amplified polymorphic DNA analysis. Reciprocal differences were detected for 15 primers. The banding patterns were different among the four types of hybrids, but there was no significant difference in the total and (or) average numbers of bands observed. We suggest that the differences in random amplified polymorphic DNA banding patterns of the hybrids are probably related to the paternal- and (or) maternal-transmitted morphological characteristics in the reciprocal cross.Key words: Cucumis, interspecific hybridization, reciprocal differences, random amplified polymorphic DNA markers, paternal and (or) maternal transmission.

Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Craig M. Sandlin ◽  
James R. Steadman ◽  
Carlos M. Araya ◽  
Dermot P. Coyne

Five isolates of the bean rust fungus Uromyces appendiculatus were shown to be specifically virulent on bean genotypes of Andean origin. This specificity was demonstrated by the virulence of five pairs of isolates on a differential set of 30 Phaseolus vulgaris landraces. Each isolate pair was from a different country in the Americas and consisted of one Andean-specific isolate and one nonspecific isolate. Of the differential P. vulgaris landraces, 15 were of Middle American origin and 15 were of Andean origin. The Andean-specific rust isolates were highly virulent on Andean landraces but not on landraces of Middle American origin. Rust isolates with virulence to Middle American landraces were also generally virulent on Andean material; no truly Middle American-specific isolates were found. Random amplified polymorphic DNA (RAPD) analysis of the rust isolates also distinguished the two groups. Four of the Andean-specific rust isolates formed a distinct group compared to four of the nonspecific isolates. Two of the isolates, one from each of the two virulence groups, had intermediate RAPD banding patterns, suggesting that plasmagomy but not karyogamy occurred between isolates of the two groups.


Author(s):  
Lestari Ujianto ◽  
Nur Basuki ◽  
Kuswanto . ◽  
Astanto Kasno

Successful interspecific hybridization between several cultivars of mungbean (Vigna radiata) and ricebean (V. umbellata) was achieved using mungbean as the female parent. Hybridization was not achieved if ricebean was used as the female parent. Seeds of hybrids were viable and grew and developed normally, producing viable seeds. The gene action of all observed quantitative characters was partially dominant, implying that it should be possible to produce stable hybrids. The progeny had desirable characteristics of both parents suggesting that interspecific hybridization of the two species could be used to produce a new, superior cultivar.


2000 ◽  
Vol 125 (4) ◽  
pp. 489-497 ◽  
Author(s):  
Veli Erdogan ◽  
Shawn A. Mehlenbacher

Eight Corylus L. (hazelnut) species were intercrossed in all possible combinations to reveal genetic relationships. Pollinations were made on either individually bagged branches or trees covered entirely with polyethylene using mixtures of pollen of five genotypes to minimize low cluster set due to single incompatible combinations. Percent cluster set, seed germination, and hybrid seedling survival were determined. Hybridity of seedlings was verified by inspection of morphological traits. Based on percent cluster set, seed germination, and hybrid seedling survival along with observed morphological similarities, Corylus species were placed in three groups: 1) the tree hazels C. colurna L. (turkish tree hazel) and C. chinensis Franchet (chinese tree hazel), 2) the bristle-husked shrub species C. cornuta Marshall (beaked hazel), C. californica (A.DC.) Rose (california hazel), and C. sieboldiana Blume (manchurian hazel), and 3) the leafy-husked shrub species C. avellana L. (european hazel), C. americana Marshall (american hazel), C. heterophylla Fischer (siberian hazel), and C. heterophylla Fischer var. sutchuensis Franchet (sichuan hazel). The two tree hazel species crossed with each other readily, as did the three bristle-husked shrub species. The frequency of blanks was low (<20%) for crosses of the tree hazels, and <50% for interspecific crosses within the group of bristle-husked species. The leafy-husked shrub species could be crossed with each other in all directions, although cluster set on C. heterophylla was low. For crosses of species belonging to different groups, set was generally low and the frequency of blanks high. Nevertheless, a few hybrid seedlings were obtained from several combinations. When used as the female parent, C. californica set nuts when crossed with all other species, indicating possible value as a bridge species. Crosses involving C. avellana were more successful when it was the pollen parent. In crosses with C. avellana pollen, cluster set on C. chinensis was better than on C. colurna and the frequency of blanks was much lower, indicating that it might be easier to transfer nonsuckering growth habit from C. chinensis than from C. colurna. Reciprocal differences in the success of crosses was observed. The following crosses were successful C. californica × C. avellana, C. chinensis × C. avellana, C americana × C. heterophylla, C. cornuta × C heterophylla, C. californica × C. colurna, and C. americana × C. sieboldiana, but the reciprocals were not.


Genome ◽  
1993 ◽  
Vol 36 (5) ◽  
pp. 844-851 ◽  
Author(s):  
K. F. Yu ◽  
K. P. Pauls

An F1 population was used to analyze the inheritance of random amplified polymorphic DNA (RAPD) markers in tetraploid alfalfa. Of the 32 RAPD markers that were used for a segregation analysis in this study, 27 gave ratios that are consistent with random chromosome and random chromatid segregation at meiosis. However, among all of the RAPD markers (121) that were screened in this study, only one example of a double reduction, that is typical of chromatid segregation, was observed. These results indicate that random chromosome segregation is likely the predominant but not the exclusive mode of inheritance for tetraploid alfalfa. χ2 analyses of cosegregation for RAPD marker pairs derived from the female parent revealed nine linkages that fell into four linkage groups. The recombination fractions among linked marker pairs ranged from 1 to 37%. These are the first molecular linkage groups reported in tetraploid alfalfa. In addition, various strategies for molecular mapping in the tetraploid alfalfa genome are proposed that should be of interest to plant breeders who are planning to use molecular markers for alfalfa or other tetraploid species.Key words: RAPD markers, tetraploid alfalfa, segregation, linkage groups.


2012 ◽  
Vol 48 (No. 8) ◽  
pp. 215-220 ◽  
Author(s):  
I. Strunjak-Perovic ◽  
R. Coz-Rakovac ◽  
N. Topic Popovic

The aim of the study was to observe the influence of different ploidy levels in fish on micronucleus occur&shy;rence. Twenty minutes after fertilization, one group of rainbow trout eggs was exposed to water temperatures of 26&deg;C in duration of 20 minutes to induce triploidy. Second group was kept in water temperature of 10&deg;C, which is optimal for development of rainbow trout. The frequency of micronucleated erythrocytes was determined in the peripheral circulation of rainbow trout 67 days (following absorption of the yolk &ndash; swim-up stage) and 128 days (fry stage) post fertilization. There was a significant difference (P &lt; 0.001) between frequency of micronucleated erythrocytes of diploid (1.10 &plusmn; 0.96&permil;) and triploid (2.41 &plusmn; 1.28&permil;) fish at swim-up stage. Increased mean values of micronucleus in diploid (1.80 &plusmn; 1.57&permil;) and triploid (5.92 &plusmn; 3.80&permil;) fry were also recorded.


1997 ◽  
Vol 48 (5) ◽  
pp. 545 ◽  
Author(s):  
E. C. Y. Liew ◽  
J. A. G. Irwin

Stem inoculation of clonally propagated lucerne genotypes was used to assess levels of host species and genotype specialisation in Phytophthora medicaginis. A quantitative assessment of pathogenic aggressiveness of 29 P. medicaginis isolates (from lucerne and chickpea) on 9 different clonally propagated lucerne genotypes revealed no significant difference in aggressiveness between isolates from lucerne and those from chickpea on all of the lucerne genotypes. This supported previous studies which showed that P. medicaginis isolates from lucerne and chickpea were indistinguishable using random amplified polymorphic DNA (RAPD) analysis. Analysis of pathogenic aggressiveness towards individual lucerne genotypes revealed, for the first time, specificity of individual P. medicaginis isolates. This has implications for breeding for resistance to P. medicaginis in lucerne, where screening should be done using the widest range of pathogen specificity obtainable.


Botany ◽  
2020 ◽  
Vol 98 (11) ◽  
pp. 661-671
Author(s):  
G.M.A. Friesen ◽  
S.R. Smith ◽  
D.J. Cattani ◽  
A.T. Phan

The need for regionally adapted native grass seed sources for the northern Great Plains has resulted in the commercial release of a range of plant materials, including ecovars™ 1 . Ecovars™ are multisite composite populations developed to combine broad genetic diversity from a geographic region. The objective of this study was to determine whether morphological data could be used to distinguish between genetically diverse blue grama [Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths] seed sources through classical statistical methods. Entries included a Manitoba (MB) ecovar™, a USDA–NRCS released cultivar ‘Bad River’, and ecotypes from Wyoming and Minnesota. Vegetative and reproductive measurements and ratings were taken from a spaced-plant nursery during 2000–2001 in Carman, Manitoba, Canada. The results were analyzed using statistical techniques including: ANOVA, least significant difference, canonical discriminant analysis (CDA), and coefficients of variation. These techniques distinguished four genetically diverse seed sources from each other through CDA. As hypothesized, there was greater within-population genetic diversity for the MB ecovar™ and Wyoming and Minnesota ecotypes, compared with ‘Bad River’. Our results indicate that genetically diverse blue grama seed sources can be distinguished, based on phenotypic measurements.


2017 ◽  
Vol 63 (No. 1) ◽  
pp. 1-10 ◽  
Author(s):  
Z. Linhartová ◽  
M. Havelka ◽  
M. Pšenička ◽  
M. Flajšhans

Gonad development in fish is generally assumed to be negatively influenced by interspecific hybridization, resulting in sterility or sub-sterility. However, this is not the case in sturgeons (Acipenseridae), in which fertile hybrids are common. In the present study, we investigated gonad development in several sturgeon interspecific hybrids and purebred species. Six interspecific hybrid groups and three purebred groups were analyzed including 20 hybrid specimens with even ploidy, 40 specimens having odd ploidy levels, and 30 purebred specimens. Hybrids of species with the same ploidy (even ploidy – 2n, 4n) exhibited normally developed gonads similar to those seen in purebred specimens. In contrast, hybrids of species differing in ploidy (odd ploidy – 3n) did not display fully developed gonads. Ovaries were composed of oocytes or nests of differentiating oocytes that ceased development in early stages of meiosis (pachytene to zygotene) with a higher content of adipose and apoptotic tissue. Testes contained single spermatogonia along with Sertoli cells and spaces lacking germ cells. The obtained results showed that gonad development was influenced by genetic origin and ploidy of the sturgeon hybrids and were consistent with full fertility of hybrids with even ploidy. Sterility of females, but possibly limited fertility of males, is suggested for hybrids with odd ploidy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
George L. Hodnett ◽  
Sara Ohadi ◽  
N. Ace Pugh ◽  
Muthukumar V. Bagavathiannan ◽  
William L. Rooney

AbstractTetraploid johnsongrass [Sorghum halepense (L.) Pers.] is a sexually-compatible weedy relative of diploid sorghum [Sorghum bicolor (L.) Moench]. To determine the extent of interspecific hybridization between male sterile grain sorghum and johnsongrass and the ploidy of their progeny, cytoplasmic (CMS), genetic (GMS) and chemically induced male sterile lines of Tx623 and Tx631 were pollinated with johnsongrass pollen. At maturity 1% and 0.07% of the developing seeds of Tx623 and Tx631 respectively were recovered. Ninety-one percent of recovered hybrids were tetraploid and two percent were triploid, the tetraploids resulting from 2n gametes present in the sorghum female parent. Their formation appears to be genotype dependent as more tetraploids were recovered from Tx623 than Tx631. Because a tetraploid sorghum x johnsongrass hybrid has a balanced genome, they are male and female fertile providing opportunities for gene flow between the two species. Given the differences in 2n gamete formation among Tx623 and Tx631, seed parent selection may be one way of reducing the likelihood of gene flow. These studies were conducted in controlled and optimum conditions; the actual outcrossing rate in natural conditions is expected to be much lower. More studies are needed to assess the rates of hybridization, fitness, and fertility of the progeny under field conditions.


2005 ◽  
Vol 85 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Yingjie Wang ◽  
Rachael Scarth ◽  
Clayton Campbell

The wild diploid species Fagopyrum homotropicum (2n = 2x = 16) has been used for buckwheat improvement, but, prior to this study, the tetraploid form (2n = 4x = 32) had not been hybridized with the cultivated species F. esculentum. The objective of this study was to hybridize F. esculentum with tetraploid F. homotropicum to increase the genetic variability. Forty-one interspecific F1 hybrids were obtained through ovule rescue in vitro, with hybridity confirmed using morphological characters, chromosome numbers (2n = 3x = 24) and DNA analysis. The F1 plants were mainly sterile. However, seven seeds were set spontaneously on two hybrid plants, and a large number of seeds were obtained after colchicine treatment. The F2 plants were divided into two groups based on chromosome numbers and morphology. The first group was hexaploid plants (2n = 6x = 48) or hypohexaploid plants (2n = 44–46), partially fertile with “gigas” features including increased height, dark green leaves, and large seeds with thick seed hulls. The second group of plants was diploid (2n = 2x = 16) (one plant had 17 chromosomes), with normal growth and fertility, and a combination of characters from both parents, indicating that genetic recombination had occurred during chromosome elimination. The diploid group was superior to the hexaploid group for use in buckwheat breeding programs due to the desirable characters and the ease of crossing. This is the first report of interspecific hybridization using different ploidy levels in the Fagopyrum genus. Key words: Buckwheat (F. esculentum; F. homotropicum), interspecific hybridization, breeding, tetraploid, diploid, hexaploid, fertility


Sign in / Sign up

Export Citation Format

Share Document