Mycorrhizal networks: a review of their extent, function, and importance

2004 ◽  
Vol 82 (8) ◽  
pp. 1140-1165 ◽  
Author(s):  
Suzanne W Simard ◽  
Daniel M Durall

It is well known from laboratory studies that a single mycorrhizal fungal isolate can colonize different plant species, form interplant linkages, and provide a conduit for interplant transfer of isotopic carbon, nitrogen, phosphorus, or water. There is increasing laboratory and field evidence that the magnitude and direction of transfer is influenced by physiological source–sink gradients between plants. There is also evidence that mycorrhizal fungi play a role in regulating transfer through their own source–sink patterns, frequency of links, and mycorrhizal dependency. Although it is plausible that connections are extensive in nature, field studies have been hampered by our inability to observe them in situ and by belowground complexity. In future, isotopic tracers, morphological observations, microsatellite techniques, and fluorescent dyes will be useful in the study of networks in nature. Mycorrhizal networks have the potential to influence patterns of seedling establishment, interplant competition, plant diversity, and plant community dynamics, but studies in this area are just beginning. Future plant community studies would benefit from concurrent experimental use of fungal network controls, isotopic labeling, direct observation of interplant linkages, and long-term observation in the field. In this paper, we review recent literature on mycorrhizal networks and interplant carbon transfer, suggest future research directions, and highlight promising scientific approaches.Key words: common mycorrhizal network, carbon transfer, source–sink, establishment, competition, diversity.

2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2002 ◽  
Vol 160 (5) ◽  
pp. 553
Author(s):  
Pastor ◽  
Peckham ◽  
Bridgham ◽  
Weltzin ◽  
Chen

Author(s):  
Sasha Harris-Lovett ◽  
Kara L. Nelson ◽  
Paloma Beamer ◽  
Heather N. Bischel ◽  
Aaron Bivins ◽  
...  

Wastewater surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging approach to help identify the risk of a coronavirus disease (COVID-19) outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, and nursing homes) scales. This paper explores the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. We present the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resources, and impacts from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Our analysis suggests that wastewater monitoring at colleges requires consideration of local information needs, sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e43867 ◽  
Author(s):  
Bryan D. Murray ◽  
Stacie A. Holmes ◽  
Christopher R. Webster ◽  
Jill C. Witt

2016 ◽  
Vol 2016 (1) ◽  
pp. 28-44 ◽  
Author(s):  
Bradley D. Pinno ◽  
◽  
Ira Sherr ◽  
Ruth C. Errington ◽  
Krista Shea

Author(s):  
Wei Fu ◽  
Baodong Chen ◽  
Matthias Rillig ◽  
Wang Ma ◽  
Chong Xu ◽  
...  

Mutualistic associations between plants and arbuscular mycorrhizal (AM) fungi may have profound influences on their response to climate changes. Existing theories evaluate the effects of interdependency and environmental filtering on plant-AM fungal community dynamics separately; however, abrupt environmental changes such as climate extremes can provoke duo-impacts on the metacommunity simultaneously. Here, we experimentally tested the relevance of plant and AM fungal community responses to extreme drought (chronic or intense) in a cold temperate grassland. Irrespective of drought intensities, plant species richness and productivity responses were significantly and positively correlated with AM fungal richness and also served as best predictors of AM fungal community shifts. Notably, the robustness of this community synergism increased with drought intensity, likely reflecting increased community interdependence. Network analysis showed a key role of Glomerales in AM fungal interaction with plants, suggesting specific plant-AM fungal pairing. Thus, community interdependence may underpin climate change impact on plant-AM fungal diversity patterns in grasslands.


2021 ◽  
Author(s):  
Stav Livne- Luzon ◽  
Rotem Cahanovitc ◽  
Tamir Klein

<p>EMF play an important role in forests around the globe, by improving tree nutrition and water supply, as well as connecting different tree species through common mycorrhizal networks (CMN's). However, the extent to which EMF control resource sharing within these networks has not yet been thoroughly addressed. We constructed a simple network of tree-fungus-tree and monitored carbon flow from a <sup>13</sup>CO<sub>2</sub> labeled donor tree to the final recipient.  DNA Stable Isotope Probing (DNA-SIP) of ectomycorrhizal root tips was used to identify the main fungal symbionts involved in carbon transfer among trees. We used pairs of inter and intra-specie Pinus halepensis and Quercus calliprinos saplings, and examined the carbon dynamics for 40 days within the leaf, stem and root tissues. The peak of <sup>13</sup>C in the roots of the donor trees was around day 4 post labeling, while the recipient roots peaked at day 9 with observed differences between pairs. The intrinsic tree carbon pool, and not the tree species identity, was the main factor governing carbon transfer between trees. Finally, we were able to identify the main fungal symbionts enriched with <sup>13</sup>C. Our results add the "missing piece of the puzzle" by linking specific mycorrhizal species to carbon transfer within CMN's.</p>


Sign in / Sign up

Export Citation Format

Share Document