Characterization of a nonphotosynthetic NADP-malic enzyme from germinating soybean cotyledons: interaction with a 94-kDa polypeptide identified as a lipoxygenase

2005 ◽  
Vol 83 (5) ◽  
pp. 529-538
Author(s):  
María Lorena Falcone Ferreyra ◽  
María Fabiana Drincovich ◽  
Carlos S Andreo ◽  
Florencio E Podestá

The major NADP-malic enzyme (NADP-ME) isoform expressed in Glycine max L. cotyledons, leaves, and roots had a subunit molecular mass of 65 kDa and a pI of 6.9. The developmental profile of NADP-ME activity in cotyledons revealed a peak around day 7 post-imbibition (1.53 U·g–1 fresh mass, 33-fold that of day 1), declining markedly thereafter. NADP-ME was partially purified (33-fold) from 7-d germinated soybean cotyledons with a yield of 41% and a final specific activity of 2.8 U·mg–1. NADP-ME had an optimal pH of 7.3 and the Km values for NADP and L-malate were 33 µmol·L–1 and 0.78 mmol·L–1, respectively. The high enzymatic activity found in soybean cotyledons suggests that it plays an important role prior to the establishment of photosynthesis. NADP-ME co-purified with a 94-kDa polypeptide (p94) through various chromatographic steps. Non-denaturing electrophoresis followed by SDS-PAGE and immunoprecipitation assays indicated that NADP-ME is physically associated with p94. Matrix-assisted laser desorption and ionization – time of flight MS of p94 tryptic peptides identified p94 as a lipoxygenase. Although the association was verified by different approaches, the functional role for such interaction is still speculative. Possible hypothesis are discussed.Key words: germinating cotyledon, isozyme, lipoxygenase, NADP-malic enzyme, protein–protein interaction, soybean.

2018 ◽  
pp. 52-58

Purificación Parcial y Caracterización de Alfa Amilasa de granos germinados de Chenopodium quinoa (Quinua) Partial Purification and Characterization of Alpha Amylase from germinated grains from Chenopopdium quinoa (Quinua) Melissa Bedón Gómez, Oscar Nolasco Cárdenas, Carlos Santa Cruz C. y Ana I. F. Gutiérrez Román Universidad Nacional Federico Villarreal, Facultad de Ciencias Naturales y Matemática, Laboratorio de Bioquímica y Biología Molecular, Jr. Río Chepén S/N, El Agustino. Telefax: 362 - 3388 DOI: https://doi.org/10.33017/RevECIPeru2013.0007/ Resumen Las alfa amilasas son las enzimas más estudiadas e importantes en el campo biotecnológico e industrial; ya que han reemplazado por completo la hidrólisis química del almidón. Estas enzimas son imprescindibles en la elaboración de productos alimenticios, combustibles, medicamentos y detergentes con la finalidad de optimizar procesos y conservar el medio ambiente. La α-amilasa puede ser purificada de diferentes organismos como plantas, animales, hongos y bacterias; actualmente un gran número de α-amilasas bacterianas en especial del género Bacillus están disponibles comercialmente y son las más utilizadas en las industrias. Sin embargo, la producción de éstas no satisfacen los requerimientos industriales en el mundo; ya que, la demanda de esta enzima se ha incrementado en los últimos dos años y el empleo de α-amilasas bacterianas ha provocado alergias afectando al 15% de la población a nivel mundial. . En este estudio, como fuente de α-amilasa se emplearon semillas de Chenopodium quinoa (quinua) var hualhuas blanca durante el proceso de germinación; esta enzima fue parcialmente purificada por precipitación con sulfato de amonio obteniendo una actividad específica final de 35.60U/mg y un grado de purificación de 5 veces. La purificación fue confirmada por SDS-PAGE, encontrando un peso molecular de 44kDa. La actividad enzimática se evaluó mediante el método de Miller mostrando máxima actividad a pH 7 y a temperatura de 37ºC. La linealización de Lineweaver-Burk nos dio un Km de 16mg/mL y Vmax de 100µM de maltosa/min. Por lo tanto, esta caracterización reúne los pre-requisitos necesarios para la aplicación en la industria. Descriptores: Chenopodium quinoa, alfa amilasa, germinación, purificación parcial. Abstract The alpha amylases are the enzymes most studied and important in biotechnology and industry; because they have completely replaced the starch’s chemical hydrolysis. These enzymes are essential in the food production, medicines and detergents in order to optimize processes and conserve the environment. The α-amylase can be isolated from different organisms such as plants, animals, fungi and bacteria, now a large number of bacterial α-amylases especially from genus Bacillus are commercially available and they are the most used in industry. However, the production of these do not meet industry requirements in the world, because the demand for this enzyme has increased in the last two years and the use of bacterial α-amilase has caused allergies affecting the 15% of the global population. In this study, as a source of α-amylase used the seeds from Chenopodium quinoa (quinoa). Var. white hualhuas during the germination process, this enzyme was partially purified by ammonium sulfate precipitation to obtain a final specific activity of 35.60U/mg, and a grade of purification of 5 times. The purification was confirmed by SDS-PAGE, where the molecular weight was 44kDa. The enzyme activity was evaluated by Miller method showing maximum activity at pH 7 and 37ºC. The Lineweaver-Burk linearization shows a Km of 16mg/mL and Vmax of 100μM the maltose / min. Therefore, these characterizations meet the prerequisites need for industry. Keywords: Chenopodium quinoa; alpha amylase; germination; partial purification


2017 ◽  
Vol 18 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Dzun Noraini Jimat ◽  
Intan Baizura Firda Mohamed ◽  
Azlin Suhaida Azmi ◽  
Parveen Jamal

A newly bacterial producing L-asparaginase was successful isolated from Sungai Klah Hot Spring, Perak, Malaysia and identified as Bacillus sp. It was the best L-asparaginase producer as compared to other isolates. Production of L-asparaginase from the microbial strain was carried out under liquid fermentation. The crude enzyme was then centrifuged and precipitated with ammonium sulfate before further purified with chromatographic method. The ion exchange chromatography HiTrap DEAE-Sepharose Fast Flow column followed by separation on Superose 12 gel filtration were used to obtain pure enzyme. The purified enzyme showed 10.11 U/mg of specific activity, 50.07% yield with 2.21 fold purification. The purified enzyme was found to be dimer in form, with a molecular weight of 65 kDa as estimated by SDS-PAGE. The maximum activity of the purified L-asparaginase was observed at pH 9 and temperature of 60°C.


2000 ◽  
Vol 352 (3) ◽  
pp. 875-882 ◽  
Author(s):  
William L. TURNER ◽  
William C. PLAXTON

Cytosolic pyruvate kinase (PKc) from ripened banana (Musa cavendishii L.) fruits has been purified 543-fold to electrophoretic homogeneity and a final specific activity of 59.7µmol of pyruvate produced/min per mg of protein. SDS/PAGE and gel-filtration FPLC of the final preparation indicated that this enzyme exists as a 240kDa homotetramer composed of subunits of 57kDa. Although the enzyme displayed a pH optimum of 6.9, optimal efficiency in substrate utilization [in terms of Vmax/Km for phosphoenolpyruvate (PEP) or ADP] was equivalent at pH6.9 and 7.5. PKc activity was absolutely dependent upon the presence of a bivalent and a univalent cation, with Mg2+ and K+ respectively fulfilling this requirement. Hyperbolic saturation kinetics were observed for the binding of PEP, ADP, Mg2+ and K+ (Km values of 0.098, 0.12, 0.27 and 0.91mM respectively). Although the enzyme utilized UDP, IDP, GDP and CDP as alternative nucleotides, ADP was the preferred substrate. L-Glutamate and MgATP were the most effective inhibitors, whereas L-aspartate functioned as an activator by reversing the inhibition of PKc by L-glutamate. The allosteric features of banana PKc are compared with those of banana PEP carboxylase [Law and Plaxton (1995) Biochem. J. 307, 807Ő816]. A model is presented which highlights the roles of cytosolic pH, MgATP, L-glutamate and L-aspartate in the co-ordinate control of the PEP branchpoint in ripening bananas.


1996 ◽  
Vol 319 (3) ◽  
pp. 977-983 ◽  
Author(s):  
Jeong Heon KO ◽  
Cheorl Ho KIM ◽  
Dae-Sil LEE ◽  
Yu Sam KIM

An extremely thermostable ADP-glucose pyrophosphorylase (AGPase) has been purified from Thermus caldophilus GK-24 to homogeneity by chromatographic methods, including gel filtration and ion-exchange and affinity chromatography. The specific activity of the enzyme was enriched 134.8-fold with a recovery of 10.5%. The purified enzyme was a single band by SDS/PAGE with a molecular mass of 52 kDa. The homotetrameric structure of the native enzyme was determined by gel filtration analysis, which showed a molecular mass of 230 kDa on a Superose-12 column, indicating that the structure of the enzyme is different from the heterotetrameric structures of higher-plant AGPases. The enzyme was most active at pH 6.0. The activity was maximal at 73–78 °C and its half-life was 30 min at 95 °C. Kinetic and regulatory properties were characterized. It was found that AGPase activity could be stimulated by a number of glycolytic intermediates. Fructose 6-phosphate, fructose 1,6-bisphosphate, phenylglyoxal and glucose 6-phosphate were effective activators, of which fructose 1,6-bisphosphate was the most effective. The enzyme was inhibited by phosphate, AMP or ADP. ATP and glucose 1-phosphate gave hyperbolic-shaped rate-concentration curves in the presence or absence of activator. A remarkable aspect of the amino acid composition was the existence of the hydrophobic and Ala+Gly residues. The N-terminal and internal peptide sequences were determined and compared with known sequences of various sources. It was apparently similar to those of AGPases from other bacterial and plant sources, suggesting that the enzymes are structurally related.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 546
Author(s):  
Jie Pan ◽  
Ni-Na Wang ◽  
Xue-Jing Yin ◽  
Xiao-Ling Liang ◽  
Zhi-Peng Wang

Tannase plays a crucial role in many fields, such as the pharmaceutical industry, beverage processing, and brewing. Although many tannases derived from bacteria and fungi have been thoroughly studied, those with good pH stabilities are still less reported. In this work, a mangrove-derived yeast strain Rhodosporidium diobovatum Q95, capable of efficiently degrading tannin, was screened to induce tannase, which exhibited an activity of up to 26.4 U/mL after 48 h cultivation in the presence of 15 g/L tannic acid. The tannase coding gene TANRD was cloned and expressed in Yarrowia lipolytica. The activity of recombinant tannase (named TanRd) was as high as 27.3 U/mL. TanRd was purified by chromatography and analysed by SDS-PAGE, showing a molecular weight of 75.1 kDa. The specific activity of TanRd towards tannic acid was 676.4 U/mg. Its highest activity was obtained at 40 °C, with more than 70% of the activity observed at 25–60 °C. Furthermore, it possessed at least 60% of the activity in a broad pH range of 2.5–6.5. Notably, TanRd was excellently stable at a pH range from 3.0 to 8.0; over 65% of its maximum activity remained after incubation. Besides, the broad substrate specificity of TanRd to esters of gallic acid has attracted wide attention. In view of the above, tannase resources were developed from mangrove-derived yeasts for the first time in this study. This tannase can become a promising material in tannin biodegradation and gallic acid production.


2005 ◽  
Vol 37 (6) ◽  
pp. 363-370 ◽  
Author(s):  
Ye-Yun Li ◽  
Chang-Jun Jiang ◽  
Xiao-Chun Wan ◽  
Zheng-Zhu Zhang ◽  
Da-Xiang Li

Abstractβ-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel β-glucosidase was purified 117-fold to homogeneity, with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50 °C and was stable at temperatures lower than 40 °C. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.


1993 ◽  
Vol 290 (3) ◽  
pp. 857-863 ◽  
Author(s):  
N Arcand ◽  
D Kluepfel ◽  
F W Paradis ◽  
R Morosoli ◽  
F Shareck

The gene coding for a beta-mannanase was cloned homologously from Streptomyces lividans and its DNA sequence was determined. The fully secreted enzyme was isolated and purified from culture filtrates of the hyperproducing clone S. lividans IAF36 grown in mineral salt media containing galactomannan as the main carbon source. It had a molecular mass of 36 kDa and a specific activity of 876 i.u./mg of protein. Under the assay conditions used, the optimal enzyme activity was obtained at 58 degrees C and a pH of 6.8. The pI was 3.5. The kinetic constants of this mannanase determined with galactomannan as substrate were a Vmax. of 205 i.u./mg of enzyme and a Km of 0.77 mg/ml. Data from SDS/PAGE and Western blotting show that the cloned enzyme was identical to that of the wild-type strain.


1992 ◽  
Vol 281 (2) ◽  
pp. 545-551 ◽  
Author(s):  
L H Chang ◽  
J Y Fan ◽  
L F Liu ◽  
S P Tsai ◽  
M F Tam

Glutathione S-transferase CL 3 subunits purified from 1-day-old-chick livers were digested with Achromobacter proteinase I and the resulting fragments were isolated for amino acid sequence analysis. An oligonucleotide probe was constructed accordingly for cDNA library screening. A cDNA clone of 1342 bases, pGCL301, encoding a protein of 26209 Da was isolated and sequenced. Including conservative substitutions, this protein has 75-79% sequence similarity to other Alpha family glutathione S-transferases. The coding sequence of pGCL301 was inserted into a baculovirus vector for infection of Spodoptera frugiperda (SF9) cells. The expressed protein has a high relative activity with ethacrynic acid (47% of the specific activity with 1-chloro-2,4-dinitrobenzene). The enzyme has a subunit molecular mass of 25.2 +/- 1.2 kDa (by SDS/PAGE), a pI of 9.45 and an absorption coefficient A1%1cm of 13.0 +/- 0.5 at 280 nm.


1984 ◽  
Vol 217 (3) ◽  
pp. 685-692 ◽  
Author(s):  
J M Renoir ◽  
J Mester ◽  
T Buchou ◽  
M G Catelli ◽  
P Tuohimaa ◽  
...  

A 110kDa component of the chick oviduct progesterone receptor (PR) has been purified to homogeneity according to electrophoretic criteria and specific activity (assuming one progestagen-binding site/110kDa). The procedure involved affinity chromatography of 0.3 M-KCl-prepared cytosol, followed by DEAE-Sephacel chromatography (elution at 0.2 M-KCl). The final yield was about 12% in terms of binding activity. Properties of the 110kDa component indicate that it is identical with the ‘B’ subunit described previously [Stokes radius approximately 6.1 nm; sedimentation coefficient, (S20, w) approximately 4S; frictional ratio approximately 1.77]. It reacted with the IgG-G3 polyclonal antibody, but not with BF4 monoclonal antibody raised against the 8S molybdate-stabilized chick oviduct PR and reacting with its 90kDa component. Another progesterone-binding component, corresponding to the ‘A’ subunit, also previously described, was eluted from the DEAE-Sephacel column at approximately 0.08 M-KCl, and contained a peptide of molecular mass approx. 75-80kDa, which had S20, w approximately 4S in a sucrose gradient. This component was also recognized by IgG-G3, but not by BF4; it was very unstable in terms of hormone-binding activity.


2003 ◽  
Vol 372 (3) ◽  
pp. 821-829 ◽  
Author(s):  
Kevin J. C. GIBSON ◽  
Martine GILLERON ◽  
Patricia CONSTANT ◽  
Germain PUZO ◽  
Jérôme NIGOU ◽  
...  

The genus Amycolatopsis is a member of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this group have a characteristic cell envelope structure, dominated by various complex lipids and polysaccharides. Amongst these, lipoglycans are of particular interest since mycobacterial lipoarabinomannans are important immunomodulatory molecules. In this study we report the isolation and structural characterization of Amycolatopsis sulphurea lipoarabinomannan, designated AsuLAM. SDS/PAGE analysis revealed that AsuLAM was of an intermediate size between Mycobacterium tuberculosis lipoarabinomannan and lipomannan, confirmed by matrix-assisted laser-desorption ionization–time-of-flight mass spectrometry that predicted an average molecular mass of 10 kDa. Using a range of chemical degradations, NMR experiments and capillary electrophoresis analysis, AsuLAM was revealed as an original structure. The mannosyl-phosphatidyl-myo-inositol anchor exhibits a single acyl-form, characterized by a diacylated glycerol moiety, and contains, as one of the main fatty acids, 14-methyl-pentadecanoate, a characteristic fatty acid of the Amycolatopsis genus. AsuLAM also contains a short mannan domain; and is dominated by a multi-branched arabinan domain, composed of an (α1→5)-Araf (arabinofuranose) chain substituted, predominately at the O-2 position, by a single β-Araf. The arabinan domain is further elaborated by manno-oligosaccharide caps, with around one per molecule. This is the first description of manno-oligosaccharide caps found in a non-mycobacterial LAM. AsuLAM was unable to induce the production of the pro-inflammatory cytokine tumour necrosis factor α when tested with human or murine macrophage cell lines, reinforcing the paradigm that mannose-capped LAM are poor inducers of pro-inflammatory cytokines.


Sign in / Sign up

Export Citation Format

Share Document