High stability ferric chelates result in decreased iron uptake by the green alga Chlorella kessleri owing to decreased ferric reductase activity and chelation of ferrous iron

Botany ◽  
2009 ◽  
Vol 87 (10) ◽  
pp. 922-931 ◽  
Author(s):  
Harold G. Weger ◽  
Jackie Lam ◽  
Nikki L. Wirtz ◽  
Crystal N. Walker ◽  
Ron G. Treble

Cells of the green alga Chlorella kessleri Fott et Nováková use a reductive mechanism for iron acquisition. Iron-limited cells acquired iron more rapidly from a chelator with a lower stability constant for Fe3+ (hydroxyethylethylenediaminetriacetic acid (HEDTA)) than from a chelator with a higher stability constant (N,N′-di[2-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED)). Furthermore, iron uptake rates decreased with increasing chelator concentrations at constant iron concentration. The negative effects of elevated HBED levels on iron uptake could be partly alleviated by the addition of Ga3+, which suggests that iron-free chelator has a negative effect on iron acquisition by competing for Fe2+ with the ferrous transport system. Furthermore, ferric reductase activity progressively decreased with increasing concentrations of both chelators (in the iron-free form). This effect was not alleviated by Ga3+ addition and was apparently caused by the direct inhibition of the reductase. Overall, we conclude that chelators with high stability constants for Fe3+ decrease iron acquisition rates by Strategy I organisms via three separate mechanisms.

1993 ◽  
Vol 13 (7) ◽  
pp. 4342-4350
Author(s):  
D G Roman ◽  
A Dancis ◽  
G J Anderson ◽  
R D Klausner

We have identified a cell surface ferric reductase activity in the fission yeast Schizosaccharomyces pombe. A mutant strain deficient in this activity was also deficient in ferric iron uptake, while ferrous iron uptake was not impaired. Therefore, reduction is a required step in cellular ferric iron acquisition. We have cloned frp1+, the wild-type allele of the mutant gene. frp1+ mRNA levels were repressed by iron addition to the growth medium. Fusion of 138 nucleotides of frp1+ promoter sequences to a reporter gene, the bacterial chloramphenicol acetyltransferase gene, conferred iron-dependent regulation upon the latter when introduced into S. pombe. The predicted amino acid sequence of the frp1+ gene exhibits hydrophobic regions compatible with transmembrane domains. It shows similarity to the Saccharomyces cerevisiae FRE1 gene product and the gp91-phox protein, a component of the human NADPH phagocyte oxidoreductase that is deficient in X-linked chronic granulomatous disease.


1993 ◽  
Vol 13 (7) ◽  
pp. 4342-4350 ◽  
Author(s):  
D G Roman ◽  
A Dancis ◽  
G J Anderson ◽  
R D Klausner

We have identified a cell surface ferric reductase activity in the fission yeast Schizosaccharomyces pombe. A mutant strain deficient in this activity was also deficient in ferric iron uptake, while ferrous iron uptake was not impaired. Therefore, reduction is a required step in cellular ferric iron acquisition. We have cloned frp1+, the wild-type allele of the mutant gene. frp1+ mRNA levels were repressed by iron addition to the growth medium. Fusion of 138 nucleotides of frp1+ promoter sequences to a reporter gene, the bacterial chloramphenicol acetyltransferase gene, conferred iron-dependent regulation upon the latter when introduced into S. pombe. The predicted amino acid sequence of the frp1+ gene exhibits hydrophobic regions compatible with transmembrane domains. It shows similarity to the Saccharomyces cerevisiae FRE1 gene product and the gp91-phox protein, a component of the human NADPH phagocyte oxidoreductase that is deficient in X-linked chronic granulomatous disease.


1999 ◽  
Vol 67 (5) ◽  
pp. 2357-2365 ◽  
Author(s):  
Karin J. Nyhus ◽  
Eric S. Jacobson

ABSTRACT Cryptococcus neoformans is a pathogenic yeast that causes meningitis in immunocompromised patients. Because iron acquisition is critical for growth of a pathogen in a host, we studied the regulation of the ferric reductase and ferrous uptake system of this organism. We isolated 18 mutants, representing four independent loci, with dysregulated ferric reductase. The mutant strains had >10-fold higher than wild-type WT reductase activity in the presence of iron. Two of the strains also had >7-fold higher than WT iron uptake in the presence of iron but were not markedly iron sensitive. Both were sensitive to the oxidative stresses associated with superoxide and hydrogen peroxide. One strain exhibited only 23% of the WT level of iron uptake in the absence of iron and grew poorly without iron supplementation of the medium, phenotypes consistent with an iron transport deficiency; it was sensitive to superoxide but not to hydrogen peroxide. The fourth strain had high reductase activity but normal iron uptake; it was not very sensitive to oxidative stress. We also demonstrated that the ferric reductase was regulated by copper and could act as a cupric reductase. Sensitivity to oxidants may be related to iron acquisition by a variety of mechanisms and may model the interaction of the yeast with the immune system.


Lipids ◽  
1984 ◽  
Vol 19 (6) ◽  
pp. 472-473 ◽  
Author(s):  
Tomáš Řezanka ◽  
Miloslav Podojil

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Yutaro Oishi ◽  
Rie Otaki ◽  
Yukari Iijima ◽  
Eri Kumagai ◽  
Motohide Aoki ◽  
...  

AbstractMembrane lipid remodeling contributes to the environmental acclimation of plants. In the green lineage, a betaine lipid, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), is included exclusively among green algae and nonflowering plants. Here, we show that the green alga Chlorella kessleri synthesizes DGTS under phosphorus-deficient conditions through the eukaryotic pathway via the ER. Simultaneously, phosphatidylcholine and phosphatidylethanolamine, which are similar to DGTS in their zwitterionic properties, are almost completely degraded to release 18.1% cellular phosphorus, and to provide diacylglycerol moieties for a part of DGTS synthesis. This lipid remodeling system that substitutes DGTS for extrachloroplast phospholipids to lower the P-quota operates through the expression induction of the BTA1 gene. Investigation of this lipid remodeling system is necessary in a wide range of lower green plants for a comprehensive understanding of their phosphorus deficiency acclimation strategies.


Sign in / Sign up

Export Citation Format

Share Document