scholarly journals Diacylglyceryl-N,N,N-trimethylhomoserine-dependent lipid remodeling in a green alga, Chlorella kessleri

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Yutaro Oishi ◽  
Rie Otaki ◽  
Yukari Iijima ◽  
Eri Kumagai ◽  
Motohide Aoki ◽  
...  

AbstractMembrane lipid remodeling contributes to the environmental acclimation of plants. In the green lineage, a betaine lipid, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), is included exclusively among green algae and nonflowering plants. Here, we show that the green alga Chlorella kessleri synthesizes DGTS under phosphorus-deficient conditions through the eukaryotic pathway via the ER. Simultaneously, phosphatidylcholine and phosphatidylethanolamine, which are similar to DGTS in their zwitterionic properties, are almost completely degraded to release 18.1% cellular phosphorus, and to provide diacylglycerol moieties for a part of DGTS synthesis. This lipid remodeling system that substitutes DGTS for extrachloroplast phospholipids to lower the P-quota operates through the expression induction of the BTA1 gene. Investigation of this lipid remodeling system is necessary in a wide range of lower green plants for a comprehensive understanding of their phosphorus deficiency acclimation strategies.

2021 ◽  
Author(s):  
Yutaro Oishi ◽  
Rie Otaki ◽  
Yukari Iijima ◽  
Eri Kumagai ◽  
Motohide Aoki ◽  
...  

Abstract Membrane lipid remodeling contributes to environmental 19 acclimation of plants. In a green lineage, a betaine lipid, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), is included exclusively among green algae and non-flowering plants. Here we show that, a green alga, Chlorella kessleri, reported to exceptionally possess no DGTS, synthesizes it specifically under phosphorus-deficiency conditions through the eukaryotic pathway via the ER. Simultaneously, phosphatidylcholine and phosphatidylethanolamine, which are similar to DGTS in its zwitterionic property, are almost completely degraded to release 18.1% cellular phosphorus, and to provide its diacylglycerol moieties for a part of DGTS synthesis. Above lipid remodeling system that substitutes DGTS for extrachloroplast phospholipids to lower the P-quota operates through expression induction of the gene for BTA1 that is functionally identified as responsible for DGTS synthesis, and those for0 phospholipid breakdown. Investigation of this lipid remodeling is necessary in a widerange of lower green plants for a comprehensive understanding of their phosphorus deficiency acclimation strategies.


Lipids ◽  
1984 ◽  
Vol 19 (6) ◽  
pp. 472-473 ◽  
Author(s):  
Tomáš Řezanka ◽  
Miloslav Podojil

1975 ◽  
Vol 30 (5-6) ◽  
pp. 333-336 ◽  
Author(s):  
H. W. Kümmel ◽  
L. H. Grimme

Abstract Prolonged cultivation of the green alga Chlorella fusca under heterotrophic conditions and in the presence of sub-lethal concentrations of SAN H 6706 (4-chloro-5-(dimethylamino)-2-(α,α,α-tri-fluoro-m-tolyl)-3 (2H)-pyridazinone) leads to an accumulation of phytoene and phytofluene. The content of chlorophylls and coloured carotenoids of the cells treated with this herbicide, compared with normal untreated cells, is diminished by about 90% and 95% respectively, but the total amount of carotenoids, including colourless phytoene and phytofluene, is increased by 65%. This suggests that SAN H 6706 causes increased accumulation of carotenoids by eliminating a biosynthetic control mechanism, so that the endproducts of the biosynthetic chain no longer control the rate of precursor formation.


Botany ◽  
2009 ◽  
Vol 87 (10) ◽  
pp. 922-931 ◽  
Author(s):  
Harold G. Weger ◽  
Jackie Lam ◽  
Nikki L. Wirtz ◽  
Crystal N. Walker ◽  
Ron G. Treble

Cells of the green alga Chlorella kessleri Fott et Nováková use a reductive mechanism for iron acquisition. Iron-limited cells acquired iron more rapidly from a chelator with a lower stability constant for Fe3+ (hydroxyethylethylenediaminetriacetic acid (HEDTA)) than from a chelator with a higher stability constant (N,N′-di[2-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED)). Furthermore, iron uptake rates decreased with increasing chelator concentrations at constant iron concentration. The negative effects of elevated HBED levels on iron uptake could be partly alleviated by the addition of Ga3+, which suggests that iron-free chelator has a negative effect on iron acquisition by competing for Fe2+ with the ferrous transport system. Furthermore, ferric reductase activity progressively decreased with increasing concentrations of both chelators (in the iron-free form). This effect was not alleviated by Ga3+ addition and was apparently caused by the direct inhibition of the reductase. Overall, we conclude that chelators with high stability constants for Fe3+ decrease iron acquisition rates by Strategy I organisms via three separate mechanisms.


Sign in / Sign up

Export Citation Format

Share Document