Malus tissue cultures. I. Sorbitol (D-glucitol) as a carbon source for callus initiation and growth

1972 ◽  
Vol 50 (6) ◽  
pp. 1399-1404 ◽  
Author(s):  
Calvin Chong ◽  
C. D. Taper

Callus cultures from 1-year-old twigs of the apple, Malus pumila, cultivars McIntosh, Cortland, and Red Delicious, and of the crabapple rootstock, Malus robusta No. 5, were successfully isolated and maintained on a medium with sorbitol as the sole carbon source. Investigation with various carbon sources, each at 3% concentration, showed that McIntosh callus grew equally well on sorbitol, sucrose, and glucose. Cortland and Robusta cultures responded equally to sorbitol and glucose but poorly to sucrose. The relative growths of the callus cultures on sorbitol were in the decreasing order, McIntosh, Cortland, and Robusta. Sorbitol served as an excellent carbon source for all three cultures.

1976 ◽  
Vol 54 (7) ◽  
pp. 547-551 ◽  
Author(s):  
Robert Coffin ◽  
C. D. Taper ◽  
Calvin Chong

Initiation of stem callus cultures on a nutrient medium with either 3% sucrose and (or) 3% sorbitol as carbon source was attempted with 17 species selected from the following genera of the Rosaceae: Amelanchier, two spp.; Crataegus, one sp.; Malus, one sp.; Prunus, nine spp.; Pyrus, one sp.; Sorbus, two spp.; and Spiraea, one sp. In the case of Malus pumila var. niedzwetzkyana (crabapple), sucrose and sorbitol media were equally effective in callus initiation, and equal growth was maintained on these media. Callus of Spiraea vanhouttei was initiated only on sucrose medium and no callus of Prunus tenella formed on either medium. With all other species, callus was initiated and (or) gave better growth on further subculture on sucrose than on sorbitol medium, except for Prunus persica (peach), which grew better on sorbitol.


1974 ◽  
Vol 52 (11) ◽  
pp. 2361-2364 ◽  
Author(s):  
Calvin Chong ◽  
C. D. Taper

Growth of callus cultures from stem explants of Malus pumila, cultivars McIntosh and Cortland, and of M. robusta No. 5, and from cotyledon explants of McIntosh was compared on standard medium with sorbitol, sucrose, glucose, and fructose, each at concentrations of 3 and 6%, and on nine other carbon sources, each at 3% concentration. Fructose was generally the most effective of the 13 carbon sources tested, although depending on concentration and callus type, sorbitol, glucose, and sucrose were as effective as fructose. Sucrose, accumulating in quantities ranging between 40 and 87% of total carbohydrate, was the predominant carbohydrate constituent found in all cultures grown on both concentrations (3 and 6%) of sorbitol, sucrose, glucose, and fructose except those grown on 6% sorbitol, which accumulated between 68 and 75% sorbitol. Cultures grown on sugars at the higher concentration accumulated between 6 and 34% sorbitol, whereas in corresponding cultures grown at the lower concentration no sorbitol was detected.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Arief Izzairy Zamani ◽  
Susann Barig ◽  
Sarah Ibrahim ◽  
Hirzun Mohd. Yusof ◽  
Julia Ibrahim ◽  
...  

Abstract Background Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources. Results Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC–MS/MS-TripleQ and GC–MS, while untargeted metabolite profiling was performed using LC–MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures. Conclusions Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.


2019 ◽  
Author(s):  
Mitchell G. Thompson ◽  
Luis E. Valencia ◽  
Jacquelyn M. Blake-Hedges ◽  
Pablo Cruz-Morales ◽  
Alexandria E. Velasquez ◽  
...  

ABSTRACTPseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year[1]. To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 hours of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.


2010 ◽  
Vol 432 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Keiji Mitsui ◽  
Masafumi Matsushita ◽  
Hiroshi Kanazawa

Organelle-localized NHEs (Na+/H+ exchangers) are found in cells from yeast to humans and contribute to organellar pH regulation by exporting H+ from the lumen to the cytosol coupled to an H+ gradient established by vacuolar H+-ATPase. The mechanisms underlying the regulation of organellar NHEs are largely unknown. In the present study, a yeast two-hybrid assay identified Mth1p as a new binding protein for Nhx1p, an organellar NHE in Saccharomyces cerevisiae. It was shown by an in vitro pull-down assay that Mth1p bound to the hydrophilic C-terminal half of Nhx1p, especially to the central portion of this region. Mth1p is known to bind to the cytoplasmic domain of the glucose sensor Snf3p/Rgt2p and also functions as a negative transcriptional regulator. Mth1p was expressed in cells grown in a medium containing galactose, but was lost (possibly degraded) when cells were grown in medium containing glucose as the sole carbon source. Deletion of the MTH1 gene increased cell growth compared with the wild-type when cells were grown in a medium containing galactose and with hygromycin or at an acidic pH. This resistance to hygromycin or acidic conditions was not observed for cells grown with glucose as the sole carbon source. Gene knockout of NHX1 increased the sensitivity to hygromycin and acidic pH. The increased resistance to hygromycin was reproduced by truncation of the Mth1p-binding region in Nhx1p. These results implicate Mth1p as a novel regulator of Nhx1p that responds to specific extracellular carbon sources.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 519-524 ◽  
Author(s):  
K.R. Pagilla ◽  
A. Sood ◽  
H. Kim

Gordonia amarae, a filamentous actinomycete, commonly found in foaming activated sludge wastewater treatment plants was investigated for its biosurfactant production capability. Soluble acetate and sparingly soluble hexadecane were used as carbon sources for G. amarae growth and biosurfactant production in laboratory scale batch reactors. The lowest surface tension (critical micelle concentration, CMC) of the cell-free culture broth was 55 dynes/cm when 1,900 mg/L acetate was used as the sole carbon source. The lowest surface tension was less than 40 dynes/cm when either 1% (v/v) hexadecane or a mixture of 1% (v/v) hexadecane and 0.5% (w/v) acetate was used as the carbon source. The maximum biomass concentration (the stationary phase) was achieved after 4 days when acetate was used along with hexadecane, whereas it took about 8 days to achieve the stationary phase with hexadecane alone. The maximum biosurfactant production was 3 × CMC with hexadecane as the sole carbon source, and it was 5 × CMC with the mixture of hexadecane and acetate. Longer term growth studies (∼ 35 days of culture growth) indicated that G. amarae produces biosurfactant in order to solubilize hexadecane, and that adding acetate improves its biosurfactant production by providing readily degradable substrate for initial biomass growth. This research confirms that the foaming problems in activated sludge containing G. amarae in the activated sludge are due to the biosurfactant production by G. amarae when hydrophobic substrates such as hexadecane are present.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7122
Author(s):  
Shuangfeng Cai ◽  
Yaran Wu ◽  
Yanan Li ◽  
Shuying Yang ◽  
Zhi Liu ◽  
...  

The chlorophyll ethanol-extracted silkworm excrement was hardly biologically reused or fermented by most microorganisms. However, partial extremely environmental halophiles were reported to be able to utilize a variety of inexpensive carbon sources to accumulate polyhydroxyalkanoates. In this study, by using the nile red staining and gas chromatography assays, two endogenous haloarchaea strains: Haloarcula hispanica A85 and Natrinema altunense A112 of silkworm excrement were shown to accumulate poly(3-hydroxybutyrate) up to 0.23 g/L and 0.08 g/L, respectively, when using the silkworm excrement as the sole carbon source. The PHA production of two haloarchaea showed no significant decreases in the silkworm excrement medium without being sterilized compared to that of the sterilized medium. Meanwhile, the CFU experiments revealed that there were more than 60% target PHAs producing haloarchaea cells at the time of the highest PHAs production, and the addition of 0.5% glucose into the open fermentation medium can largely increase both the ratio of target haloarchaea cells (to nearly 100%) and the production of PHAs. In conclusion, our study demonstrated the feasibility of using endogenous haloarchaea to utilize waste silkworm excrement, effectively. The introduce of halophiles could provide a potential way for open fermentation to further lower the cost of the production of PHAs.


2012 ◽  
Vol 78 (15) ◽  
pp. 5375-5383 ◽  
Author(s):  
Nicole Lindenkamp ◽  
Elena Volodina ◽  
Alexander Steinbüchel

ABSTRACTβ-Ketothiolases catalyze the first step of poly(3-hydroxybutyrate) [poly(3HB)] biosynthesis in bacteria by condensation of two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA and also take part in the degradation of fatty acids. During growth on propionate or valerate,Ralstonia eutrophaH16 produces the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)]. InR. eutropha, 15 β-ketothiolase homologues exist. The synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) could be significantly reduced in an 8-fold mutant (Lindenkamp et al., Appl. Environ. Microbiol. 76:5373–5382, 2010). In this study, a 9-fold mutant deficient in nine β-ketothiolase gene homologues (phaA,bktB, H16_A1713, H16_B1771, H16_A1528, H16_B0381, H16_B1369, H16_A0170, andpcaF) was generated. In order to examine the polyhydroxyalkanoate production capacity when short- or long-chain and even- or odd-chain-length fatty acids were provided as carbon sources, the growth and storage behavior of several mutants from the previous study and the newly generated 9-fold mutant were analyzed. Propionate, valerate, octanoate, undecanoic acid, or oleate was chosen as the sole carbon source. On octanoate, no significant differences in growth or storage behavior were observed between wild-typeR. eutrophaand the mutants. In contrast, during the growth on oleate of a multiple mutant lackingphaA,bktB, and H16_A0170, diminished poly(3HB) accumulation occurred. Surprisingly, the amount of accumulated poly(3HB) in the multiple mutants grown on gluconate differed; it was much lower than that on oleate. The β-ketothiolase activity toward acetoacetyl-CoA in H16ΔphaAand all the multiple mutants remained 10-fold lower than the activity of the wild type, regardless of which carbon source, oleate or gluconate, was employed. During growth on valerate as a sole carbon source, the 9-fold mutant accumulated almost a poly(3-hydroxyvalerate) [poly(3HV)] homopolyester with 99 mol% 3HV constituents.


2021 ◽  
Author(s):  
Daisuke Watanabe ◽  
Wataru Hashimoto

Abstract Saccharomyces cerevisiae, an essential player in alcoholic fermentation during winemaking, is rarely found in intact grapes. Here, we addressed symbiotic interactions between S. cerevisiae and grape-skin residents upon spontaneous wine fermentation. When glucose was used as a carbon source, the yeast-like fungus Aureobasidium pullulans, a major grape-skin resident, had no effect on alcoholic fermentation by S. cerevisiae. In contrast, when intact grape berries as a sole carbon source, coculture of S. cerevisiae and A. pullulans accelerated alcoholic fermentation. Thus, grape-inhabiting microorganisms may increase carbon availability by degrading and/or incorporating grape-skin materials, such as cell wall and cuticles. A. pullulans exhibited broad spectrum assimilation of plant-derived carbon sources, including ω-hydroxy fatty acids, arising from degradation of cutin. In fact, yeast-type cutinase was produced from A. pullulans EXF-150 strain. The degradation and utilization of grape-skin materials by fungal microbiota may account for their colonization on grape-skin and symbiotic interactions with S. cerevisiae.


Sign in / Sign up

Export Citation Format

Share Document