Isolation and axenic culture of poplar rust

1974 ◽  
Vol 52 (10) ◽  
pp. 2228-2229 ◽  
Author(s):  
W. David Lane ◽  
Michael Shaw

Surface-sterilized leaf pieces of black cottonwood (Populus trichocarpa) leaves centered on uredial infections of Melampsora occidentalis Pers. were placed, pustule side up, on a defined, agar-based medium. After 4 months the fungus became established on the medium. Axenic colonies, some of which produced urediospores, were established by transfer to fresh medium and were capable of reinfecting excised leaf pieces of the host. The technique bypasses germling development in vitro. This is the first report of the axenic culture of Melampsora occidentalis.

2021 ◽  
Author(s):  
Nathalie D Lackus ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Tobias G Köllner

AbstractBenzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


1972 ◽  
Vol 50 (7) ◽  
pp. 1627-1631 ◽  
Author(s):  
K. S. Bawa ◽  
R. F. Stettler

Female catkin primordia of black cottonwood (Populus trichocarpa T. & G. ex Hook.) were cultured for 70 days on a modified Murashige and Skoog's (1962) medium in vitro. Explants 2–3 mm long, and with bud scales removed, gave the best results, many of them developing floral structures characteristic of the female sex. There was a general tendency to callus formation with increasing age of the culture, occasionally followed by a reversal to vegetative growth. Catkin primordia raised on Wolter's medium without auxin or kinetin, but with 6-benzylaminopurine, and at 250 ft-c for a 16-h photoperiod, proliferated axillary shoots in loco of pistils.


2014 ◽  
Author(s):  
Hitomi Obata ◽  
Maki Kamoshita ◽  
Tsubasa Kato ◽  
Junya Ito ◽  
Naomi Kashiwazaki
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karina Cañón-Beltrán ◽  
Yulia N. Cajas ◽  
Serafín Peréz-Cerezales ◽  
Claudia L. V. Leal ◽  
Ekaitz Agirregoitia ◽  
...  

AbstractIn vitro culture can alter the development and quality of bovine embryos. Therefore, we aimed to evaluate whether nobiletin supplementation during EGA improves embryonic development and blastocyst quality and if it affects PI3K/AKT signaling pathway. In vitro zygotes were cultured in SOF + 5% FCS (Control) or supplemented with 5, 10 or 25 µM nobiletin (Nob5, Nob10, Nob25) or with 0.03% dimethyl-sulfoxide (CDMSO) during minor (2 to 8-cell stage; MNEGA) or major (8 to 16-cell stage; MJEGA) EGA phase. Blastocyst yield on Day 8 was higher in Nob5 (42.7 ± 1.0%) and Nob10 (44.4 ± 1.3%) for MNEGA phase and in Nob10 (61.0 ± 0.8%) for MJEGA phase compared to other groups. Mitochondrial activity was higher and lipid content was reduced in blastocysts produced with nobiletin, irrespective of EGA phase. The mRNA abundance of CDK2, H3-3B, H3-3A, GPX1, NFE2L2 and PPARα transcripts was increased in 8-cells, 16-cells and blastocysts from nobiletin groups. Immunofluorescence analysis revealed immunoreactive proteins for p-AKT forms (Thr308 and Ser473) in bovine blastocysts produced with nobiletin. In conclusion, nobiletin supplementation during EGA has a positive effect on preimplantation bovine embryonic development in vitro and corroborates on the quality improvement of the produced blastocysts which could be modulated by the activation of AKT signaling pathway.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 109
Author(s):  
Hani A. Alhadrami ◽  
Bathini Thissera ◽  
Marwa H. A. Hassan ◽  
Fathy A. Behery ◽  
Che Julius Ngwa ◽  
...  

Coculture is a productive technique to trigger microbes’ biosynthetic capacity by mimicking the natural habitats’ features principally by competition for food and space and interspecies cross-talks. Mixed cultivation of two Red Sea-derived actinobacteria, Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp. UR59, resulted in the induction of several non-traced metabolites in their axenic cultures, which were detected using LC–HRMS metabolomics analysis. Antimalarial guided isolation of the cocultured fermentation led to the isolation of the angucyclines actinosporins E (1), H (2), G (3), tetragulol (5) and the anthraquinone capillasterquinone B (6), which were not reported under axenic conditions. Interestingly, actinosporins were previously induced when the axenic culture of the Actinokineospora spheciospongiae strain EG49 was treated with signalling molecule N-acetyl-d-glucosamine (GluNAc); this finding confirmed the effectiveness of coculture in the discovery of microbial metabolites yet to be discovered in the axenic fermentation with the potential that could be comparable to adding chemical signalling molecules in the fermentation flask. The isolated angucycline and anthraquinone compounds exhibited in vitro antimalarial activity and good biding affinity against lysyl-tRNA synthetase (PfKRS1), highlighting their potential developability as new antimalarial structural motif.


Sign in / Sign up

Export Citation Format

Share Document