Unusual cell wall layers in elm parenchyma of secondary xylem

1978 ◽  
Vol 56 (17) ◽  
pp. 2109-2113 ◽  
Author(s):  
G. B. Ouellette

Multilayering of secondary wall layers in American elm parenchyma cells is described. This includes one additional layer like S1–S3 and protective layers each in vasicentric parenchyma and up to two additional such layers in ray parenchyma. These extra layers are comparable with those mentioned by a few other workers, but they are not necessarily related to tylosis formation as implied by some of these.

1988 ◽  
Vol 66 (9) ◽  
pp. 1841-1847 ◽  
Author(s):  
Robert A. Blanchette ◽  
John R. Obst ◽  
John I. Hedges ◽  
Karen Weliky

White stringy rot, an unusual type of selective fungal decay, can be found in wood of some dicotyledonous angiosperms. Stages of advanced decay consist of a mass of vessel elements with only remnants of other cells adhering to the vessel walls. Degradation by various white rot Basidiomycetes causes loss of fibers, fiber tracheids, and parenchyma cells but not vessels. In wood of Acacia koa var. koa with a white pocket rot caused by Phellinus kawakamii, fibers and parenchyma cells were preferentially delignified. After extensive lignin removal the cellulose remaining in the secondary wall was degraded. Large vessel elements remained relatively intact after other cells were completely degraded. The resistance of vessels to degradation appears to be due to their high ligninxarbohydrate ratio, lignin monomer composition, and cell wall morphology.


IAWA Journal ◽  
2014 ◽  
Vol 35 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Shengcheng Zhai ◽  
Yoshiki Horikawa ◽  
Tomoya Imai ◽  
Junji Sugiyama

The cell wall organization of leaf sheath fibers in different palm species was studied with polarized light microscopy (PLM) and transmission electron microscopy (TEM). The secondary wall of the fibers consisted of only two layers, S1 and S2. The thickness of the S1 layer in leaf sheath fibers from the different palm species ranged from 0.31 to 0.90 μm, with a mean value of 0.57 μm, which was thicker than that of tracheids and fibers in secondary xylem of conifers and dicotyledons. The thickness of the S2 layer ranged from 0.44 to 3.43 μm, with a mean value of 1.86 μm. The ratio of S1 thickness to the whole cell wall thickness in palm fibers appears to be higher than in secondary xylem fibers and tracheids. The lignin in the fiber walls is very electron dense which makes it difficult to obtain high contrast of the different layers in the secondary wall. To clarify the cell wall layering with cellulose microfibrils in different orientations, the fibrovascular bundles of the windmill palm (Trachycarpus fortunei) were delignified with different reaction time intervals. The treated fibers were surveyed using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis and TEM. The secondary fiber walls of windmill palm clearly showed only two layers at different reaction intervals with different lignin contents, even after almost all lignin was removed. We suggest that the two-layered structure in the secondary wall of palm leaf fibers, which presumably also applies to the homologous fibers in palm stems, is a specific character different from the fibers in other monocotyledons (such as bamboo and rattan) and dicot wood.


1960 ◽  
Vol 8 (1) ◽  
pp. 51 ◽  
Author(s):  
J Cronshaw

Observstion in the electron microscope of carbon replicas of the pits of vessels, ray parenchyma cells, fibres, and tracheids of Eucalyptus regnans has shown the detailed structure of the pit borders and the pit closing membranes. In all cases in the mature wood the primary wall is left apparently without modification as the pit membrane. Unlike the borders of the pits of fibre tracheids and tracheids, the pit borders of the vessels are not separate; the cellulose microfibrils of a border may be common to several pits. The pit borders of fibre traoheids and tracheids are developed as separate entities and have a structure similar to the pit borders of softwood tracheids. The structure of the secondary wall layers associated with the pits is described and related to the structure of the pits. The fine structural features of the pits, especially of the pit closing membranes, are discussed in relation to the movement of liquids into wood.


IAWA Journal ◽  
2015 ◽  
Vol 36 (4) ◽  
pp. 400-408 ◽  
Author(s):  
Kishore S. Rajput ◽  
Sangeeta Gupta

Successive cambia are often associated with the climbing or shrub habit, and is less common in trees. We studied formation of successive cambia and structure of secondary xylem in young stems of Cocculus laurifolius DC., a tree species of Menispermaceae. Cell division in the vascular cambium ceased in pencil-thick stems. Subsequently, parenchyma cells located outside the perivascular fibre cap re-differentiated and gave rise to several small segments of meristematic cells, of which the central cells divided repeatedly to initiate the first successive cambium which produces secondary xylem centripetally and phloem centrifugally. Cells located on the inner side of the newly initiated cambium differentiated into conjunctive tissue while cells on the outer side of it divided further and differentiated into sclereids. Xylem was diffuse porous and composed of vessels, fibre tracheids and ray parenchyma cells, and only differed in vessel diameter from wide-vessel climbing relatives.


2018 ◽  
Vol 151 (2) ◽  
pp. 219-230 ◽  
Author(s):  
Manoj M. Lekhak ◽  
Amit D. Gondaliya ◽  
Shrirang R. Yadav ◽  
Kishore S. Rajput

Background – Population growth of lianas in the tropical forest is credited to their ability of CO2 sequestration and efficiency of the narrow stems to supply water required for the amount of foliage it bears. Turbina corymbosa (L.) Raf. (Convolvulaceae Juss.) is one of the fast-growing invasive species of scrambling woody lianas. It covers trees entirely within a short period to compete with above-ground resources (particularly sunlight). However, no information is available on how it manages to cope up with an increasing demand of water supply and mineral nutrients. What are the structural and developmental patterns adapted by this species to expand the stem diameter for efficient supply of below-ground resources? Therefore, our aim was to investigate the secondary growth patterns and structure of secondary xylem and phloem in T. corymbosa.Methods – Several samples of the stem with various diameters were studied using a histological method. Morphological and anatomical analyses were carried out using light microscopy.Key results – With the initiation of secondary growth, stems lose their circular outline rapidly due to unequal deposition of secondary xylem and formation of successive cambia. New successive cambia initiate from parenchymatous cells as small crescent-shaped fragments on asymmetric/opposite sides and result in a different stem conformation. Though several segments of successive cambia are formed, very few stem samples form complete cambium rings. The secondary xylem formed by successive cambia is diffuse porous with indistinct growth rings and is composed of both wide and narrow (fibriform) vessels, tracheids, fibres, axial and ray parenchyma cells. The secondary phloem consists of sieve tube elements, companion cells, axial and ray parenchyma cells. In fully grown plants, cambial action (internal cambium) occurrs between the intraxylary phloem and protoxylem and produces secondary xylem and phloem near the pith region.Conclusion – Structural alterations and unequal deposition of conducting elements, occurrence of intraxylary phloem and flattening of the stem are suggested to facilitate rapid growth of the plants by providing required minerals and nutrients. Internal cambium formed at the periphery of the pith is bidirectional and produces secondary xylem externally and intraxylary phloem internally. Continued development of intraxylary phloem from the internal cambium provides an additional path for rapid and safe translocation of photosynthates.


IAWA Journal ◽  
1987 ◽  
Vol 8 (2) ◽  
pp. 167-174 ◽  
Author(s):  
A.M. Babu ◽  
G.M. Nair ◽  
J.J. Shah

Traumatic gum-resin cavities develop in the secondary xylem of the stem of Ailanthus excelsa Roxb. in response to fungal infection and ethephon treatment. After infection or ethephon treatment, traumatic parenchyma in several cell layers develops instead of normal secondary xylem elements. It consists of unlignified axial and ray parenchyma cells. Vessels and fibres are absent. Gum-resin cavities in one or two tangential rows develop in this tissue by the lysis of its axial parenchyma cells. The cavities are bordered by an epithelium. A few layers of traumatic parenchyma cells adjacent to the epithelial cens become meristematic and appear cambiform. The epithelial cells undergo lysis and they evidently contribute to gum-resin formation. As the lysis of epithelial cens proceeds, the adjacent cambiform cens divide to form additional epithelial cells. The process continues for some time and eventually an the axial cells of the traumatic parenchyma break down forming a tangentially anastomosing network of cavities. The cavities do not traverse the ray cells, and the multiseriate rays remain intact like bridges amidst the ramifying cavities.


IAWA Journal ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 383-401 ◽  
Author(s):  
Jong Sik Kim ◽  
Geoffrey Daniel

Although there is considerable information on anatomy and gross chemistry of oak wood, little is known on the ultrastructure and chemistry at the individual cell wall level. In particular, differences in ultrastructure and chemistry within the same cell type between earlywood (EW) and latewood (LW) are poorly understood. This study investigated the ultrastructure and chemistry of (vasicentric) tracheids, vessels, (libriform) fibers and axial/ray parenchyma cells of English oak xylem (Quercus robur L.) using light-, fluorescence- and transmission electron microscopy combined with histo/cytochemistry and immunohisto/ cytochemistry. EW tracheids showed several differences from LW tracheids including thinner cell walls, wider middle lamella cell corner (MLcc) regions and lesser amounts of mannan epitopes. Fibers showed thicker cell walls and higher amounts of mannan epitopes than tracheids. EW vessels were rich in guaiacyl (G) lignin with a characteristic non-layered cell wall organization (absence of S1–3 layers), whereas LW vessels were rich in syringyl (S) lignin with a three layered cell wall structure (S1–3 layers). Formation of a highly lignified and wide protective layer (PL) inside axial/ray parenchyma cells was detected only in EW. Distribution of mannan epitopes varied greatly between cell types and between EW and LW, whereas distribution of xylan epitopes was almost identical in all cell types within a growth ring. Together, this study demonstrates that there are great variations in ultrastructure and chemistry of cell walls within a single growth ring of English oak xylem.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Lizhen Wang ◽  
Hao Ren ◽  
Shengcheng Zhai ◽  
Huamin Zhai

AbstractThe anatomy and ultrastructure of sunflower stalk rind are closely related to its conversion and utilization. We studied systematically the anatomy and ultrastructure of the stalk rind using light, scanning electron, transmission electron and fluorescence microscopy. The results showed that the stalk rind consisted of phloem fibers (PF), xylem fibers (XF), vessel elements (V), ground parenchyma cells (GPC), axial parenchyma cells (APC), xylem ray parenchyma cells (XRPC), and pith ray parenchyma cells (PRPC). These cell walls were divided into the middle lamella, primary wall, and secondary wall (S). It was found that the S of PF, XF and V was further divided into three layers (S1–S3), while the S of APC, GPC, XRPC and PRPC showed a non-layered cell wall organization or differentiated two (S1, S2) to seven layers (S1–S7). Our research revealed the plasmodesmata characteristics in the pit membranes (PMs) between parenchyma cells (inter-GPCs, inter-XRPCs, and inter-PRPCs). The morphology of the plasmodesmata varied with the types of parenchyma cells. The thickness and diameter of PMs between the cells (inter-Vs, V–XF, V–APC, and V–XRPC) were greater than that of PMs between parenchyma cells. The cell corners among parenchyma cells were intercellular space. The lignification degree of vessels was higher than that of parenchyma cells and fibers. The results will provide useful insights into the biological structure, conversion and utilization of sunflower stalk rind.


2019 ◽  
Author(s):  
Sunita Kushwah ◽  
Alicja Banasiak ◽  
Nobuyuki Nishikubo ◽  
Marta Derba-Maceluch ◽  
Mateusz Majda ◽  
...  

ABSTRACTIn dicotyledons, xyloglucan is the major hemicellulose of primary walls affecting the load-bearing framework with participation of XTH enzymes. We used loss- and gain-of function approaches to study functions of abundant cambial region expressed XTH4 and XTH9 in secondary growth. In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. In addition, they stimulated secondary wall thickening, but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition, indicating overall increase in secondary versus primary walls in the mutants, indicative of higher xylem production compared to wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed intermediate number of layers. These changes correlated with certain Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers where neither XTH4 nor XTH9 were expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and in cell wall integrity sensing, including THE1 and WAK2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates the xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan can affect wood properties both directly and via cell wall integrity sensing.SIGNIFICANCE STATEMENTXyloglucan is a ubiquitous component of primary cell walls in all land plants but has not been so far reported in secondary walls. It is metabolized in muro by cell wall-residing enzymes - xyloglucan endotransglycosylases/hydrolases (XTHs), which are reportedly abundant in vascular tissues, but their role in these tissues is unclear. Here we report that two vascular expressed enzymes in Arabidopsis, XTH4 and XTH9 contribute to the secondary xylem cell radial expansion and intrusive elongation in secondary vascular tissues.Unexpectedly, deficiency in their activities highly affect chemistry and ultrastructure of secondary cell walls by non-cell autonomous mechanisms, including transcriptional induction of secondary wall-related biosynthetic genes and cell wall integrity sensors. These results link xyloglucan metabolism with cell wall integrity pathways, shedding new light on previous reports about prominent effects of xyloglucan metabolism on secondary walls.One sentence summaryXTH4 and XTH9 positively regulate xylem cell expansion and fiber intrusive tip growth, and their deficiency alters secondary wall formation via cell wall integrity sensing mechanisms.


Sign in / Sign up

Export Citation Format

Share Document