Dormancy of apple embryos. Are starch and reserve protein changes related to dormancy breaking?

1984 ◽  
Vol 62 (11) ◽  
pp. 2308-2315 ◽  
Author(s):  
Michelle Bouvier-Durand ◽  
Alina Dawidowicz-Grzegorzewska ◽  
Claudine Thévenot ◽  
Daniel Come

During cold stratification of apple seeds both dormancy removal and initiation of the germination process occur. To characterize these two processes and to dissociate them from each other, two different cold treatments were used. One of them (cold treatment within the fruits) excluded the germination process, the other corresponded to classical stratification. Control treatments at moderate temperature were also applied. Starch accumulated in the radicle during breaking of embryo dormancy by stratification, whereas it disappeared when dormancy was broken inside the fruits. The comparison of starch changes at 0 and at 20 °C also showed that these changes cannot be related to dormancy release. Moreover, no proteolysis occurred whether dormancy was broken or not. Proteolysis observed during stratification of the embryos seemed to be linked to their imbibition (the first step of the germination). These data refute previous observations on this problem; they demonstrate that neither starch variations nor reserve protein changes can be related to breaking of embryo dormancy.

1997 ◽  
Vol 7 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Jeffrey L. Walck ◽  
Jerry M. Baskin ◽  
Carol C. Baskin

AbstractSolidago shortiiis endemic to a small area in northcentral Kentucky (USA), whereas two of its sympatric congeners,S. altissimaandS. nemoralis, are geographically widespread. Seeds (achenes) ofS. shortii(0.370 mg) are significantly larger (PLSD,P=0.05) than those ofS. altissima(0.070 mg) andS. nemoralis(0.068 mg). Germination percentages of freshly-matured seeds of the threeSolidagospecies collected in November 1991, 1992 and 1994 were 0–2% in light at 15/6°C, 1–37% at 20/10°C, 9–56% at 25/15°C and 10–85% at 30/15 and 35/20°C. Stratification increased the percentage and rate of germination and decreased the time to the onset of germination (measured by Timson's index only at 20/10°C in light) in the three species. Following 12 weeks of cold stratification in light, seeds of the three species germinated to 72–100% in the light and to 22–100% in darkness over the range of thermoperiods; those cold-stratified in darkness germinated to 39–100% in light. Freshly-matured seeds ofS. altissimaand ofS. nemoralisgerminated to 0–4% in darkness, whereas those cold-stratified for 12 weeks in darkness germinated to 0–28% in darkness. On the other hand, freshly-matured and cold-stratified (in darkness) seeds ofS. shortiigerminated to 0–13 and 13–73%, respectively, in darkness. Under near-natural temperatures in a glasshouse without temperature control, germination of the three species peaked in March. Thus, the primary difference in dormancy-breaking and germination requirements of the three species is that the endemic germinates to a much higher percentage in darkness than its two congeners. Seeds ofS. shortiido not have any special dormancy-breaking or germination requirements that could not be fulfilled outside its present-day geographic range.


2000 ◽  
Vol 10 (4) ◽  
pp. 459-469 ◽  
Author(s):  
Siti N. Hidayati ◽  
Jerry M. Baskin ◽  
Carol C. Baskin

AbstractDormancy-breaking requirements and types of dormancy were determined for seeds ofLonicera fragrantissimaLindl. & Paxt.,L. japonicaThunb.,L. maackii(Rupr.) Maxim. andL. morrowiiA. Gray. Seeds of all four species have underdeveloped spatulate embryos that are about 20–40%fully developed (elongated) when dispersed. Embryos in freshly matured, intact seeds grew better at 25/15°C than at 5°C. Gibberellic acid (GA3) (tested only in the light) was more effective in breaking dormancy inL. maackiiandL. morrowiithan inL. fragrantissimaandL. japonica. Warm- followed by cold stratification was required to break dormancy in seeds ofL. fragrantissima, whereas seeds ofL. japonicarequired cold stratification only. Thus, seeds ofL. fragrantissimahave deep simple morphophysiological dormancy (MPD) and those ofL. japonicanondeep simple MPD. About 50%of the seeds ofL. maackiirequired warm- or cold stratification only to come out of dormancy and 50% of those ofL. morrowiirequired warm stratification only, whereas the other 50% did not require stratification to germinate. Thus, about half of the seeds of the two species has nondeep simple MPD, and the other half has morphological dormancy (MD). In these laboratory tests, seeds ofL. japonica,L. maackii, andL. morrowiigenerally germinated to significantly higher percentages in light than in darkness; seeds ofL. fragrantissimawere not tested in darkness. Peaks of germination for seeds ofL. fragrantissima,L. japonica,L. maackiiandL. morrowiisown on a soil surface and covered withQuercusleaves under near-natural temperature conditions shortly after seed maturity and dispersal in late June 1997, late November 1997, early November 1996 and late June 1998, respectively, occurred in early March 1998, late February 1998, late March 1997 and early October 1998, respectively. The germination phenologies of seeds of the same species and seed lots buried in soil were similar to those of seeds under leaf litter. High percentages of seeds of all four species germinated both under litter (78–96%) and beneath the soil surface (78–97%). These germination patterns correspond closely with the requirements for embryo growth and dormancy break in the fourLoniceraspecies.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2009 ◽  
Vol 19 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Filip Vandelook ◽  
Nele Bolle ◽  
Jozef A. Van Assche

AbstractA low-temperature requirement for dormancy break has been observed frequently in temperate-climate Apiaceae species, resulting in spring emergence of seedlings. A series of experiments was performed to identify dormancy-breaking requirements of Aegopodium podagraria, a nitrophilous perennial growing mainly in mildly shaded places. In natural conditions, the embryos in seeds of A. podagraria grow in early winter. Seedlings were first observed in early spring and seedling emergence peaked in March and April. Experiments using temperature-controlled incubators revealed that embryos in seeds of A. podagraria grow only at low temperatures (5°C), irrespective of a pretreatment at higher temperatures. Seeds did not germinate immediately after embryo growth was completed, instead an additional cold stratification period was required to break dormancy completely. Once dormancy was broken, seeds germinated at a range of temperatures. Addition of gibberellic acid (GA3) had a positive effect on embryo growth in seeds incubated at 10°C and at 23°C, but it did not promote germination. Since seeds of A. podagraria have a low-temperature requirement for embryo growth and require an additional chilling period after completion of embryo growth, they exhibit characteristics of deep complex morphophysiological dormancy.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 319
Author(s):  
Yuhan Tang ◽  
Keliang Zhang ◽  
Yin Zhang ◽  
Jun Tao

Sorbus alnifolia (Siebold & Zucc.) K.Koch (Rosaceae) is an economically important tree in the temperate forests of Eastern China. In recent decades, ever-increasing use and modification of forestlands have resulted in major degeneration of the natural habitat of S. alnifolia. Moreover, S. alnifolia seeds germinate in a complicated way, leading to a high cost of propagation. The current study aimed to determine the requirements for breaking seed dormancy and for germination as well as to characterize the type of seed dormancy present in this species. Moreover, the roles of temperature, cold/warm stratification, and gibberellic acid (GA3) in breaking dormancy were tested combined with a study of the soil seed bank. The results showed that intact seeds of S. alnifolia were dormant, requiring 150 days of cold stratification to achieve the maximum germination percentage at 5/15 °C. Exposure of the seeds to ranges of temperatures at 15/25 °C and 20/30 °C resulted in secondary dormancy. Scarifying seed coat and partial removal of the cotyledon promoted germination. Compared with long-term cold stratification, one month of warm stratification plus cold stratification was superior in breaking dormancy. Application of GA3 did not break the dormancy during two months of incubation. Seeds of S. alnifolia formed a transient seed bank. The viability of freshly matured S. alnifolia seeds was 87.65% ± 11.67%, but this declined to 38.25% after 6-months of storage at room temperature. Seeds of S. alnifolia have a deep physiological dormancy; cold stratification will be useful in propagating this species. The long chilling requirements of S. alnifolia seeds would avoid seedling death in winter.


2019 ◽  
Vol 138 ◽  
pp. 112-120
Author(s):  
Katarzyna Ciacka ◽  
Urszula Krasuska ◽  
Katarzyna Otulak-Kozieł ◽  
Agnieszka Gniazdowska

Nematology ◽  
2018 ◽  
Vol 20 (6) ◽  
pp. 503-518 ◽  
Author(s):  
Xun Yan ◽  
Yinying Lin ◽  
Zhenmao Huang ◽  
Richou Han

Summary The biological and biocontrol traits of two entomopathogenic nematode isolates, Steinernema pakistanense 94-1 (Sp94-1) and Heterorhabditis indica 212-2 (Hi212-2), were evaluated. The highest yield of infective juveniles (IJ) in monoxenic sponge culture system for Sp94-1 and Hi212-2 was 3.52 (± 0.45) × 105 and 7.08 (± 0.11) × 105 IJ g−1, respectively. The optimum storage temperature was 25°C for Sp94-1 and 14°C for Hi212-2. Sp94-1 showed greater tolerance to heat exposure and UV radiation, while S. carpocapsae All, a commercial strain, was more resistant to osmotic pressure, desiccation, cold treatment and hypoxia than the other tested isolates. Hi212-2 suppressed the Phyllotreta striolata larvae when applied at 1.5 × 109 IJ ha−1 or higher concentrations, while Sp94-1 suppressed the P. striolata larvae only when applied at 4.5 × 109 IJ ha−1. Our study indicates the possibility of commercialisation of the EPN isolates, and further confirms their efficacy against the P. striolata larvae in the field.


HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 191-193 ◽  
Author(s):  
Phil S. Allen ◽  
Susan E. Meyer

To determine optimum germination temperatures and effective dormancy-breaking procedures, field-grown (1983-85) seeds of `Bandera' Rocky Mountain penstemon (Penstemon strictus Benth), `Cedar' Palmer penstemon (Penstemon palmeri Gray), and firecracker penstemon (Penstemon eatonii Gray) were subjected to various cold stratification and incubation temperature treatments. Increased germination following an 8-week stratification occurred in seed lots containing dormant seeds, but a 2-week stratification generally failed to break dormancy. Older (1983) seeds of `Bandera' and `Cedar' penstemon germinated to full viability without stratification. All species showed a marked decrease in germination percentage above 20C; 15C consistently produced maximum germination after 4 weeks. At 15C, mean times to 90% of total germination were 11, 22, and 29 days for `Bandera', `Cedar', and firecracker penstemon, respectively. Transfer of seeds failing to germinate at warm temperatures (25 and 30C) to 15C and applying 720 μm gibberellic acid (GA3) solution was effective in breaking primary dormancy of firecracker penstemon and secondary dormancy of `Bandera' penstemon. Our findings suggest that incubation below 20C, combined with 8 weeks of stratification or the use of after-ripened seed, may improve seed propagation efforts for these species.


1992 ◽  
Vol 32 (1) ◽  
pp. 89 ◽  
Author(s):  
AP George ◽  
J Lloyd ◽  
RJ Nissen

The growth regulator hydrogen cyanamide (Dormex, 50% a.i.) was tested for its effectiveness in promoting earlier and more even budbreak, flowering, and fruit maturity of the low chill peach cv. Flordaprince at 2 sites in subtropical Australia. The influence of the growth retardant paclobutrazol was also tested at 1 site, and at the other, the effect of altering pruning date. At 1 site only, hydrogen cyanamide applied early-mid June, during endodormancy, advanced mean harvest time by 10 days. At the other site, there were no consistent trends between harvest time and date of application of cyanamide. Dormex at the lowest concentration applied (10 mL/L) caused severe yield reductions (40.8%). Flowering and fruit maturity were advanced by about 6 days with dormant pruning in early winter, compared with pruning at later dates, and by 13 days with the application of the growth retardant paclobutrazol, compared with no application.


Sign in / Sign up

Export Citation Format

Share Document