Water availability and the comparative emergence of four conifer species

1985 ◽  
Vol 63 (10) ◽  
pp. 1740-1746 ◽  
Author(s):  
P. A. Thomas ◽  
Ross W. Wein

Some conifer species require shelter from direct sunlight to establish on surface charred organic matter. Since shelter slows the rate of soil drying, it has been postulated that the emergence of seedlings on such seedbeds is limited by soil moisture availability. In the greenhouse, the emergence of four species was observed from beds of soil watered at different frequencies. Compared with well-watered controls, emergence from infrequently watered seedbeds was higher in jack pine (Pinus banksiana Lamb.) than in eastern white pine (P. strobus L.) and lowest in black spruce (Picea mariana (Mill.) BSP.) and the balsam fir (Abies balsamea (L.) Mill.). This is in the same order as the ability to emerge without shelter on postfire seedbeds. Coping with fluctuating moisture availability was concluded to be a major factor in determining emergence on this harsh seedbed. Seeds were also germinated in solutions of polyethylene glycol 6000. These data, together with measurements of the resistance to and tolerance of water loss, suggest that eastern white pine succeeds because preemergent seedlings can tolerate desiccating conditions. Measurements of radicle elongation rates indicate that jack pine succeeds by evading periods of low water availability.

2004 ◽  
Vol 34 (9) ◽  
pp. 1938-1945 ◽  
Author(s):  
Isobel Waters ◽  
Steven W Kembel ◽  
Jean-François Gingras ◽  
Jennifer M Shay

This study compares the effects of full-tree versus cut-to-length forest harvesting methods on tree regeneration in jack pine (Pinus banksiana Lamb.), mixedwood (Picea glauca (Moench) Voss – Populus tremuloides Michx. – Abies balsamea (L.) Mill.), and black spruce (Picea mariana (Mill.) BSP) sites in southeastern Manitoba, Canada. We surveyed tree regeneration densities, disturbance characteristics, and understorey vegetation in replicated control and harvested plots in each site type preharvest (1993) and 1 and 3 years postharvest (1994, 1996). In jack pine sites, the full-tree harvest method promoted regeneration of Pinus banksiana through increased disturbance of soil and the moss layer, and decreased slash deposition relative to the cut-to-length method. Conversely, in mixedwood sites the cut-to-length method resulted in less damage to advance regeneration and proved better at promoting postharvest regeneration of Abies balsamea and Picea glauca relative to the full-tree method. In black spruce sites, there were few differences in the impact of the two harvesting methods on regeneration of Picea mariana, which increased in frequency and density after both types of harvesting.


2006 ◽  
Vol 36 (10) ◽  
pp. 2474-2485 ◽  
Author(s):  
Robert G Wagner ◽  
Andrew P Robinson

The influence of the timing and duration of interspecific competition on planted jack pine (Pinus banksiana Lamb.), red pine (Pinus resinosa Ait.), eastern white pine (Pinus strobus L.), and black spruce (Picea mariana (Mill.) BSP) was assessed using 10-year growth responses in a northern Ontario experiment. Stand volume was 117%, 208%, 224%, and 343% higher for jack pine, red pine, white pine, and black spruce, respectively, with 5 years of vegetation control than with no vegetation control. Stand volume increased linearly with number of years of vegetation control, and the slope of the relationship varied among conifer species. Change-point regression analysis was used to derive segmented weed-free and weed-infested curves, and to simultaneously estimate key critical-period parameters. Weed-free and weed-infested curves in the 10th year were similar to those derived in year 5, indicating that the patterns established during the first few years after planting were relatively robust for the first decade. The critical-period was 2 and 3 years after planting for jack pine and red pine, respectively, and occupied most of the 5-year period for white pine and black spruce. Principal components analysis of the vegetation community indicated that repeated herbicide applications caused differential shifts in the relative abundance of shrub, fern, and moss species through the 10th year. Species richness, however, was not substantially different between the untreated control and the most intensive treatments. Difference modeling was used to quantify how annual volume increment during the first decade varied with time, conifer species, cover of woody and herbaceous vegetation, and stage of development.


2005 ◽  
Vol 81 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Daniel Mailly ◽  
Mélanie Gaudreault

The objective of this study was to develop variable growth intercept models for coniferous species of major importance in Quebec using Nigh's (1997a) modelling technique. Eighty-three, 68, and 70 stem analysis plots of black spruce (Picea mariana [Mill.] BSP), jack pine (Pinus banksiana Lamb.) and balsam fir (Abies balsamea (L.) Mill) were used, respectively. The growth intercept models for black spruce were the most precise, followed by those for jack pine and finally by those for balsam fir, based on the root mean square errors. Results indicated that the accuracy of the models was good, relative to those previously published for other species in Canada. Interim testing of the models revealed a low mean error for all three species that may not be of practical significance for site index determination, although more data should be obtained to further test the models. Key words: balsam fir, black spruce, growth intercept, jack pine, model, nonlinear regression, site index


2005 ◽  
Vol 81 (1) ◽  
pp. 114-124 ◽  
Author(s):  
Daniel Mailly ◽  
Mélanie Gaudreault

The objective of this study was to develop variable growth intercept models for coniferous species of major importance in Quebec using Nigh's (1997a) modelling technique. Eighty-three, 68 and 70 stem analysis plots of black spruce (Picea mariana [Mill.] BSP), jack pine (Pinus banksiana Lamb.) and balsam fir (Abies balsamea (L.) Mill) were used, respectively. The growth intercept models for black spruce were the most precise, followed by those for jack pine and finally by those for balsam fir, based on the root mean square errors. Results indicated that the accuracy of the models was good, relative to those previously published for other species in Canada. Interim testing of the models revealed a low mean error for all three species that may not be of practical significance for site index determination, although more data should be obtained to further test the models. Key words: balsam fir, black spruce, growth intercept, jack pine, model, nonlinear regression, site index


2010 ◽  
Vol 40 (4) ◽  
pp. 822-826 ◽  
Author(s):  
Kevin J. Kemball ◽  
A. Richard Westwood ◽  
G. Geoff Wang

Mineral soils exposed by fire are often covered by a layer of ash due to complete consumption of the forest floor (litter and duff). To assess the possible effects of ash on seed germination and viability of jack pine ( Pinus banksiana Lamb.), black spruce ( Picea mariana (Mill.) Britton, Sterns, Poggenb.), white spruce ( Picea glauca (Moench) Voss), and balsam fir ( Abies balsamea (L.) Mill.), a laboratory experiment was conducted using ash derived from three types of forest floor samples. The samples represented areas of high conifer concentration, high aspen concentration, and mixed aspen and conifer and were collected from five mature aspen ( Populus tremuloides Michx.) – conifer mixedwood stands in southeastern Manitoba. Ash derived from each forest floor type neither prohibited nor delayed conifer germination, except that of balsam fir. Balsam fir had significantly less germination on ash derived from forest floor samples with high aspen concentration. When corrected for seed viability, balsam fir had significantly less germination on all three ash types compared with jack pine, black spruce, and white spruce. However, the impact of ash on balsam fir is unlikely to have meaningful ecological implications, as balsam fir is a climax species and will establish in undisturbed mature forests.


2010 ◽  
Vol 86 (6) ◽  
pp. 775-779 ◽  
Author(s):  
Alice Verrez ◽  
Dan Quiring ◽  
Thibaut Leinekugel Le Cocq ◽  
Greg Adams ◽  
Yill Sung Park

White pine weevil (Pissodes strobi Peck) damage was evaluated in one white pine (Pinus strobus L.) and four jack pine(Pinus banksiana Lamb) half-sib family test sites to determine the role of tree genotype in resistance to the weevil. Halfsibfamily explained a significant proportion of the variation in weevil attack at all sites. Estimates of family (0.16-0.54)and individual (0.09-0.24) heritabilities of jack pine resistance to white pine weevil were moderate. Estimates of family(0.37) and individual (0.22) heritability of resistance of white pine to the weevil were also moderate when the percentageof test trees damaged by the weevil was relatively low, but were insignificant four years later when more than three-quartersof trees were damaged. Significant positive correlations between mean tree height and mean incidence of trees damagedby the weevil were observed for four of seven site-years but relationships were weak, suggesting that any cost, withrespect to height growth, to breeding weevil resistant trees may be small.Key words: Pinus, Pissodes strobi, trade-offs, tree improvement, tree resistance, white pine weevil.


1987 ◽  
Vol 63 (6) ◽  
pp. 446-450 ◽  
Author(s):  
James E. Wood ◽  
Richard Raper

In the alternate strip clearcutting system, first-cut strips are regenerated by seed produced by black spruce (Picea mariana [Mill.] B.S.P.) in the forested leave strips. However, after the second cut, such a seed source is not available for regenerating the leave strips. Therefore, the forest manager must consider a number of alternative regeneration options. The selection of the most appropriate regeneration option is dependent upon several economic and biological criteria. These include future costs of delivered wood, site productivity, post-harvest site condition, future alternative sources of supply, and future demand for industrial wood. Regeneration options such as preservation of advance growth and direct seeding are recommended for sites on which the manager is concerned primarily with regenerating first cut strips and is willing to accept a lower level of stocking in leave strips. Planting, the most intensive option discussed, should be reserved for sites offering the highest potential return or greatest future cost savings. Direct seeding of jack pine (Pinus banksiana Lamb.) should be considered on the upland portions of this patterned site type. Mixing jack pine and black spruce is a suggested regeneration option if the site contains both upland and lowland topographic positions. Other seeding options include the use of semi-transparent plastic seed shelters. The manager might consider combining two or more of these options to meet management objectives.


2017 ◽  
Vol 47 (8) ◽  
pp. 1116-1122 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Conifer winter damage results primarily from loss of cold hardiness during unseasonably warm days in late winter and early spring, and such damage may increase in frequency and severity under a warming climate. In this study, the dehardening dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) B.S.P.) were examined in relation to thermal accumulation during artificial dehardening in winter (December) and spring (March) using relative electrolyte leakage and visual assessment of pine needles and spruce shoots. Results indicated that all four species dehardened at a similar rate and to a similar extent, despite considerably different thermal accumulation requirements. Spring dehardening was comparatively faster, with black spruce slightly hardier than the other conifers at the late stage of spring dehardening. The difference, however, was relatively small and did not afford black spruce significant protection during seedling freezing tests prior to budbreak in late March and early May. The dehardening curves and models developed in this study may serve as a tool to predict cold hardiness by temperature and to understand the potential risks of conifer cold injury during warming–freezing events prior to budbreak.


1998 ◽  
Vol 78 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Helmut Krause

The purpose of this study was to determine whether change of forest cover had an effect on the development of the organic surface horizons, particularly on those variables that influence nutrient cycling and forest productivity. Jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) plantations were selected from among the youngest to oldest (2–16 yr) within a 100 km2 area in southeastern New Brunswick. Natural forests were also included as benchmark sites. The forest floor and tree foliage was sampled and trees measured on 0.05-ha plots. The forest floor samples were used to determine organic mass, nutrient contents and pH. In pine plantations, organic matter accumulated rapidly during the period of exponential tree growth, but leveled off at about 45 Mg ha–1. This was within the range of benchmark sites with mixed conifer-hardwood cover. In spruce plantations, the forest floor mass ranged upward to 77 Mg ha–1. Development was strongly influenced by the nature of the previous forest. Spruce forest floors were on average more acid and had lower nutrient concentrations, particularly N and Ca. The observed differences suggest that nutrients are recycled more rapidly in the pine plantations, partly explaining the superior growth of the latter. Key words: Forest floor, Kalmia angustifolia L., Picea mariana (Mill.) B.S.P., Pinus banksiana Lamb., nutrient cycling, plantation forest


Sign in / Sign up

Export Citation Format

Share Document