Phenotypic flexibility and genetic adaptation along a gradient of secondary forest succession in the grass Danthonia spicata

1986 ◽  
Vol 64 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Samuel M. Scheiner ◽  
James A. Teeri

Populations of Danthonia spicata were studied from sites of ages 0, 26, 32, 44, and 69 years after fire in the aspen–pine forests of northern lower Michigan. Along this gradient the environment changes from unshaded and dry to a shaded, moist pine and hardwood forest. Greenhouse treatments and transplant gardens were used to investigate the extent to which phenotypic flexibility and genetic adaptation were responsible for the persistence of D. spicata across this light and soil moisture gradient. With regard to phenotypic flexibility, we found that individual plants of D. spicata can grow and reproduce in light levels lower than those found at any site in the field. The populations were genetically distinct from each other but the differences were small relative to the range of phenotypic flexibility. Some populations and individuals performed better under high light conditions and all individuals performed equally poorly under low light conditions. A multivariate analysis suggests that genetic drift may have been more important than selection in differentiating the populations. Phenotypic flexibility was shown to be more important than genetic adaptation in explaining the persistence of D. spicata along the successional gradient.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qiansheng Li ◽  
Min Deng ◽  
Yanshi Xiong ◽  
Allen Coombes ◽  
Wei Zhao

Aeschynanthus longicaulisplants are understory plants in the forest, adapting to low light conditions in their native habitats. To observe the effects of the high irradiance on growth and physiology, plants were grown under two different light levels, PPFD 650 μmol·m–2·s–1and 150 μmol·m–2·s–1for 6 months. Plants under high irradiance had significantly thicker leaves with smaller leaf area, length, width, and perimeter compared to the plants grown under low irradiance. Under high irradiance, the leaf color turned yellowish and the total chlorophyll decreased from 5.081 mg·dm−2to 3.367 mg·dm−2. The anthocyanin content of high irradiance leaves was double that of those under low irradiance. The plants under high irradiance had significantly lower Amax(5.69 μmol·m–2·s–1) and LSP (367 μmol·m–2·s–1) and higher LCP (21.9 μmol·m–2·s–1). The chlorophyll fluorescence parameterFv/Fmwas significantly lower and NPQ was significantly higher in high irradiance plants. RLCs showed significantly lowerETRmax⁡andEkin plants under high irradiance. It can be concluded that the maximum PPFD of 650 μmol·m–2·s–1led to significant light stress and photoinhibition ofA. longicaulis.


HortScience ◽  
2002 ◽  
Vol 37 (6) ◽  
pp. 954-958 ◽  
Author(s):  
Theresa Bosma ◽  
John M. Dole

Various postharvest treatments were evaluated for effect on longevity and quality of cut Campanula medium L. `Champion Blue' and `Champion Pink' stems. Stems stored at 2 °C either wet or dry had no difference in vase life or percent flowers opened; however, flowers stored dry had a slightly greater percentage of senesced flowers at termination. Increasing storage duration from 1 to 3 weeks decreased vase life. Stems pretreated for 4 hours with 38 °C floral solution (deionized water amended to pH 3.5 with citric acid and 200 mg·L-1 8-HQC) or a 1-MCP pulse followed by a 5% sucrose pulse solution produced the longest vase life (10.3 or 10.4 days, respectively). Flowers opening after treatments commenced were paler than those flowers already opened and a 24-hour pretreatment with 5% or 10% sucrose did not prevent this color reduction. Stems had an average vase life of only 3.3 days when placed in floral vase foam but lasted 10.0 days without foam. Optimum sucrose concentration was 1.0% to 2.0% for stems placed in 22 °C floral vase solution without foam and 4% for stems placed in foam. High (110 μmol·m-2·s-1) or low (10 μmol·m-2·s-1) light levels did not affect postharvest parameters, but the most recently opened flowers were paler under low light conditions than under high light conditions. Chemical names used: 8-hydroxyquinoline citrate (8-HQC); 1-methylcyclopropene (1-MCP).


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1783
Author(s):  
Louis John Irving ◽  
Sayuki Mori

Plants allocate biomass to above- and below-ground organs in response to environmental conditions. While the broad patterns are well-understood, the mechanisms by which plants allocate new growth remain unclear. Modeling approaches to biomass allocation broadly split into functional equilibrium type models and more mechanistically based transport resistance type models. We grew Poa annua plants in split root boxes under high and low light levels, high and low N supplies, with N supplied equally or unequally. Our data suggest that light level had the strongest effect on root mass, with N level being more important in controlling shoot mass. Allocation of growth within the root system was compatible with phloem partitioning models. The root mass fraction was affected by both light and N levels, although within light levels the changes were primarily due to changes in shoot growth, with root mass remaining relatively invariant. Under low light conditions, plants exhibited increased specific leaf area, presumably to compensate for low light levels. In a follow-up experiment, we showed that differential root growth could be suppressed by defoliation under low light conditions. Our data were more compatible with transport resistance type models.


2019 ◽  
Author(s):  
Luhong Jin ◽  
Bei Liu ◽  
Fenqiang Zhao ◽  
Stephen Hahn ◽  
Bowei Dong ◽  
...  

AbstractUsing deep learning to augment structured illumination microscopy (SIM), we obtained a fivefold reduction in the number of raw images required for super-resolution SIM, and generated images under extreme low light conditions (100X fewer photons). We validated the performance of deep neural networks on different cellular structures and achieved multi-color, live-cell super-resolution imaging with greatly reduced photobleaching.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


1997 ◽  
Vol 75 (9) ◽  
pp. 1424-1435 ◽  
Author(s):  
D. Mailly ◽  
J. P. Kimmins

Silvicultural alternatives that differ in the degree of overstory removal may create shady environments that will be problematic for the regeneration of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Gradients of light in the field were used to compare mortality, growth, and leaf morphological acclimation of two conifer species of contrasting shade tolerances: Douglas-fir and western hemlock (Tsuga heterophylla (Raf.) Sarg.). Results after two growing seasons indicated that Douglas-fir mortality occurred mainly at relative light intensity (RLI) below 20%, while western hemlock mortality was evenly distributed along the light gradient. Height, diameter, and biomass of the planted seedlings increased with increasing light for both species but at different rates, and maximum biomass accumulation always occurred in the open. Douglas-fir allocated more resources to stem biomass than western hemlock, which accumulated more foliage biomass. Increases in specific leaf area for Douglas-fir seedlings occurred at RLI ≤ 0.4 and red/far red (R/FR) ratio ≤ 0.6, which appear to be the minimal optimum light levels for growth. Conversely, western hemlock seedlings adjusted their leaf morphology in a more regular pattern, and changes were less pronounced at low light levels. These results, along with early mortality results for Douglas-fir, suggest that the most successful way to artificially regenerate this species may be by allowing at least 20% of RLI for ensuring survival and at least 40% RLI for optimum growth. Key words: light, light quality, leaf morphology, acclimation.


Sign in / Sign up

Export Citation Format

Share Document