Changes in the Stoichiometry of Photosystem II Components as an Adaptive Response to High-Light and Low-Light Conditions during Growth

1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.

2021 ◽  
Vol 22 (8) ◽  
pp. 4021
Author(s):  
Monika Kula-Maximenko ◽  
Kamil Jan Zieliński ◽  
Ireneusz Ślesak

Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.


2017 ◽  
Vol 14 (24) ◽  
pp. 5693-5704 ◽  
Author(s):  
Gabriella M. Weiss ◽  
Eva Y. Pfannerstill ◽  
Stefan Schouten ◽  
Jaap S. Sinninghe Damsté ◽  
Marcel T. J. van der Meer

Abstract. Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.


1982 ◽  
Vol 37 (10) ◽  
pp. 889-897 ◽  
Author(s):  
H. K. Lichtenthaler ◽  
D. Meier ◽  
G. Retzlaff ◽  
R. Hamm

Abstract The inhibition of photosynthetic CO2-assimilation and of the variable chlorophyll fluorescence as well as uptake and transport of 14C-labelled bentazon and the possibilities for a herbicideinduced shade-type modification of the photosynthetic apparatus were investigated in bentazonsensitive weeds (Galium, Sinapis, Raphanus) and in the tolerant crop plants wheat and maize.1. In weeds the depression of photosynthetic CO2-assimilation is irreversible, whereas tolerant plants recover due to the metabolization of the active herbicide.2. A lower rate of uptake and transport of bentazon associated with its fast metabolization is the reason for the tolerance of crop plants towards bentazon.3. The transport of [14C]bentazon proceeds in the tracheary elements of the xylem. Uptake and transport of bentazon in the weeds are light dependent.4. The loss of variable fluorescence (Kautsky effect) in the leaves after root application o f bentazon proceeds much faster at high-light than at low light conditions and confirms the light-dependency of the bentazon transport.5. In the sensitive dicot weeds bentazon not only inhibits photosynthetic electron flow and depresses CO2-fixation but also induces the formation of shade-type chloroplasts which are less efficient in photosynthetic quantum conversion. This bentazon-induced modification of the photosynthetic apparatus (e.g. changes in ultrastructure, pigment ratios, and levels of chloro-phyll-proteins) contributes to the effectiveness of bentazon as a herbicide.


2008 ◽  
Vol 191 (5) ◽  
pp. 1581-1586 ◽  
Author(s):  
Yurie Seino ◽  
Tomoko Takahashi ◽  
Yukako Hihara

ABSTRACT The coordinated high-light response of genes encoding subunits of photosystem I (PSI) is achieved by the AT-rich region located just upstream of the core promoter in Synechocystis sp. strain PCC 6803. The upstream element enhances the basal promoter activity under low-light conditions, whereas this positive regulation is lost immediately after the shift to high-light conditions. In this study, we focused on a high-light regulatory 1 (HLR1) sequence included in the upstream element of every PSI gene examined. A gel mobility shift assay revealed that a response regulator RpaB binds to the HLR1 sequence in PSI promoters. Base substitution in the HLR1 sequence or decrease in copy number of the rpaB gene resulted in decrease in the promoter activity of PSI genes under low-light conditions. These observations suggest that RpaB acts as a transcriptional activator for PSI genes. It is likely that RpaB binds to the HLR1 sequence under low-light conditions and works for positive regulation of PSI genes and for negative regulation of high-light-inducible genes depending on the location of the HLR1 sequence within target promoters.


1977 ◽  
Vol 55 (12) ◽  
pp. 1650-1659 ◽  
Author(s):  
D. Chevallier ◽  
R. Douce ◽  
F. Nurit

The effect of DBMIB, antimycine A, and FCCP on respiration and photosynthesis of intact chlorophyllic moss (Funaria hygrometrica) spore was investigated.Antimycine A (1 μM) strongly inhibited dark respiration, was without effect on photosynthesis at high light intensities (above the saturation plateau values), and stimulated photosynthesis at low light intensities (below the saturation plateau values).DBMIB (3 μM) inhibited photosynthesis and was without effect, even under light conditions, on the dark respiration. Low amount of FCCP (3 μM) partially inhibited oxygen production at high light intensities. In this case, the inhibition observed was partially relieved by 1 μM antimycine A or 30 μM of KCN; higher concentration of FCCP totally inhibited the oxygen production.It seems likely, therefore, that in the chlorophyllic moss spore the cytochrome oxidase pathway is not functioning under high light intensities and that this inhibition of respiration is attributable to the low cytoplasmic ADP:ATP ratio.


2007 ◽  
Vol 189 (7) ◽  
pp. 2750-2758 ◽  
Author(s):  
Masayuki Muramatsu ◽  
Yukako Hihara

ABSTRACT Genes encoding subunits of photosystem I (PSI genes) in the cyanobacterium Synechocystis sp. strain PCC 6803 are actively transcribed under low-light conditions, whereas their transcription is coordinately and rapidly down-regulated upon the shift to high-light conditions. In order to identify the molecular mechanism of the coordinated high-light response, we searched for common light-responsive elements in the promoter region of PSI genes. First, the precise architecture of the psaD promoter was determined and compared with the previously identified structure of the psaAB promoter. One of two promoters of the psaAB genes (P1) and of the psaD gene (P2) possessed an AT-rich light-responsive element located just upstream of the basal promoter region. These sequences enhanced the basal promoter activity under low-light conditions, and their activity was transiently suppressed upon the shift to high-light conditions. Subsequent analysis of psaC, psaE, psaK1, and psaLI promoters revealed that their light response was also achieved by AT-rich sequences located at the −70 to −46 region. These results clearly show that AT-rich upstream elements are responsible for the coordinated high-light response of PSI genes dispersed throughout Synechocystis genome.


2021 ◽  
Author(s):  
◽  
Bruce David Dudley

<p>The use of delta15N and delta13C signatures to infer sources of enrichment in ecological systems relies on predictability in the transfer of delta15N and delta13C ratios. This thesis examines patterns of delta15N and delta13C change as pools of nitrogen and carbon move from a sewage effluent discharge into organisms in an adjacent coastal rocky reef community (Titahi Bay, New Zealand). These changes and their mechanisms are examined in the broader context of current research using carbon and nitrogen stable isotope ratios in marine ecology, with particular reference to impact assessment. Firstly this thesis examines the assimilation of nitrogen and carbon isotopes in Ulva sp. under varying light conditions and nitrogen source (e.g., nitrate or ammonium). In a field study, algae grown at depth and under lower light conditions showed comparatively lighter nitrogen isotope signatures relative to the predicted concentration of available 15N-enriched sewage nitrogen. In a complementary laboratory experiment, results from manipulated light availability and N source (either nitrate or ammonium, in equivalent molar concentrations) suggest that: 1) low-light conditions can produce algae with lighter nitrogen isotope signatures; and 2) this effect was more pronounced for ammonium (3.7 per mil difference between high light and low light treatments) than for nitrate (0.6 per mil difference between high light and low light treatments) sources. Stable carbon isotope ratios (delta13C) of Ulva sp.grown in conditions of low nitrogen availability were shown to be generally lower than those grown in nitrogen rich conditions in both field and laboratory studies. Where nitrogen supply was sufficient for growth, low light conditions also produced generally lower delta13C signatures than high light conditions. Experimental trials with a uniform dissolved inorganic carbon source and altered light and nitrogen enrichment levels produced delta 13C levels in Ulva sp. tissue that spanned the recorded delta13C ranges of many common algal species; -5.99 per mil (high light, with added ammonium and phosphate) to -17.61 per mil (high light without nutrient additions). Chapter 3 of this study examines the growth response of Ulva sp. to surplus nitrate and ammonium (the two most common forms of nitrogen available to plants in seawater), under light limited conditions. Ulva sp. experienced a temporary reduction in growth rate and nitrogen assimilation capacity (shown in tissue nitrogen indices) when grown on nitrate, relative to ammonium. The magnitude and the temporary nature of these results suggest that in natural populations the relative proportion of nitrate or ammonium available is unlikely to significantly affect the growth capacity of Ulva sp. In chapter 4, I use delta13C and delta15N signatures to separately trace the dissolved and particulate fractions of sewage effluent dispersal onto a rocky reef community. Delta15N signatures from tissue of the macroalga Carpophyllum maschalocarpum, and the herbivorous isopod Amphoroidea media tracked the distribution and signature of DIN from a sewage treatment plant that generated heavy delta15N signatures. Delta13C signatures from tissue of the filter-feeding half-crab Petrolisthes elongatus tracked the distribution and signature of suspended sewage particulate organic matter.</p>


2020 ◽  
Vol 21 (22) ◽  
pp. 8643
Author(s):  
Alessandro Grinzato ◽  
Pascal Albanese ◽  
Roberto Marotta ◽  
Paolo Swuec ◽  
Guido Saracco ◽  
...  

In plant grana thylakoid membranes Photosystem II (PSII) associates with a variable number of antenna proteins (LHCII) to form different types of supercomplexes (PSII-LHCII), whose organization is dynamically adjusted in response to light cues, with the C2S2 more abundant in high-light and the C2S2M2 in low-light. Paired PSII-LHCII supercomplexes interacting at their stromal surface from adjacent thylakoid membranes were previously suggested to mediate grana stacking. Here, we present the cryo-electron microscopy maps of paired C2S2 and C2S2M2 supercomplexes isolated from pea plants grown in high-light and low-light, respectively. These maps show a different rotational offset between the two supercomplexes in the pair, responsible for modifying their reciprocal interaction and energetic connectivity. This evidence reveals a different way by which paired PSII-LHCII supercomplexes can mediate grana stacking at diverse irradiances. Electrostatic stromal interactions between LHCII trimers almost completely overlapping in the paired C2S2 can be the main determinant by which PSII-LHCII supercomplexes mediate grana stacking in plants grown in high-light, whereas the mutual interaction of stromal N-terminal loops of two facing Lhcb4 subunits in the paired C2S2M2 can fulfil this task in plants grown in low-light. The high-light induced accumulation of the Lhcb4.3 protein in PSII-LHCII supercomplexes has been previously reported. Our cryo-electron microscopy map at 3.8 Å resolution of the C2S2 supercomplex isolated from plants grown in high-light suggests the presence of the Lhcb4.3 protein revealing peculiar structural features of this high-light-specific antenna important for photoprotection.


2012 ◽  
Vol 83 (3) ◽  
pp. 700-710 ◽  
Author(s):  
Elena Bañares-España ◽  
Jacco C. Kromkamp ◽  
Victoria López-Rodas ◽  
Eduardo Costas ◽  
Antonio Flores-Moya

2020 ◽  
Vol 295 (43) ◽  
pp. 14537-14545 ◽  
Author(s):  
Eunchul Kim ◽  
Akimasa Watanabe ◽  
Christopher D. P. Duffy ◽  
Alexander V. Ruban ◽  
Jun Minagawa

An intriguing molecular architecture called the “semi-crystalline photosystem II (PSII) array” has been observed in the thylakoid membranes in vascular plants. It is an array of PSII–light-harvesting complex II (LHCII) supercomplexes that only appears in low light, but its functional role has not been clarified. Here, we identified PSII–LHCII supercomplexes in their monomeric and multimeric forms in low light–acclimated spinach leaves and prepared them using sucrose-density gradient ultracentrifugation in the presence of amphipol A8-35. When the leaves were acclimated to high light, only the monomeric forms were present, suggesting that the multimeric forms represent a structural adaptation to low light and that disaggregation of the PSII–LHCII supercomplex represents an adaptation to high light. Single-particle EM revealed that the multimeric PSII–LHCII supercomplexes are composed of two (“megacomplex”) or three (“arraycomplex”) units of PSII–LHCII supercomplexes, which likely constitute a fraction of the semi-crystalline PSII array. Further characterization with fluorescence analysis revealed that multimeric forms have a higher light-harvesting capability but a lower thermal dissipation capability than the monomeric form. These findings suggest that the configurational conversion of PSII–LHCII supercomplexes may serve as a structural basis for acclimation of plants to environmental light.


Sign in / Sign up

Export Citation Format

Share Document